Proof - Q3 [Practice/M] (8/7/21)

Prove that there are no positive integers $m$ and $n$ such that $m^{2}=n^{2}+1$

## Solution

[Proof by contradiction]
Suppose that $m^{2}=n^{2}+1$, where $m$ and $n$ are positive integers.
Then $m^{2}-n^{2}=1$,
and hence $(m-n)(m+n)=1$
As $m$ and $n$ are integers, $m-n$ and $m+n$ will also be integers, and so they are either both 1 or both -1

But $m+n>0$, so that $m-n=1$ and $m+n=1$
Subtracting the 1 st eq'n from the 2 nd gives $2 n=0$, so that $n=0$, which contradicts the assumption that $n$ is a positive integer.

So there are no positive integers $m$ and $n$ such that $m^{2}=n^{2}+1$

