Proof - Q3 [Practice/M](8/7/21)

Prove that there are no positive integers m and n such that

$$m^2 = n^2 + 1$$

Solution

[Proof by contradiction]

Suppose that $m^2 = n^2 + 1$, where m and n are positive integers.

Then
$$m^2 - n^2 = 1$$
,

and hence
$$(m-n)(m+n)=1$$

As m and n are integers, m-n and m+n will also be integers, and so they are either both 1 or both -1

But
$$m + n > 0$$
, so that $m - n = 1$ and $m + n = 1$

Subtracting the 1st eq'n from the 2nd gives 2n = 0, so that n = 0, which contradicts the assumption that n is a positive integer.

So there are no positive integers m and n such that $m^2 = n^2 + 1$