Proof - Q2 [Practice/E](8/7/21)

Prove that the sum of the squares of consecutive positive integers is odd.

Solution

Case 1: The smaller integer is even; say $2 n$
Then $(2 n)^{2}+(2 n+1)^{2}=4 n^{2}+4 n^{2}+4 n+1$
$=2\left(4 n^{2}+2 n\right)+1$, which is odd .
Case 2: The smaller integer is odd; say $2 n+1$
Then $(2 n+1)^{2}+(2 n+2)^{2}=4 n^{2}+4 n+1+4 n^{2}+8 n+4$
$=2\left(4 n^{2}+6 n+2\right)+1$, which is odd .

