Proof-Q1 [Practice/E](8/7/21)

If n is a positive integer, and n^{2} is odd, prove that n is odd.

Solution

[Proof by contradiction]
Suppose that n is even. Then $n=2 m$, for some positive integer m. But then $n^{2}=(2 m)^{2}=4 m^{2}$, which is divisible by 2 , and hence even. This contradicts the fact that n^{2} is odd, and so n must be odd.

