See also: Prob. \& Stats - "Selections"

Contents

(1) Overview of Approaches and Devices
(2) Examples

Appendix: Standard results

(1) Overview of Approaches and Devices

(A) Symmetry / lateral thinking
[Although an argument along these lines may save a lot of time, it has to be 'convincing' for exam purposes, and so may be risky to some extent.]

Refer to the following example(s):
Example 1, Approach 1
Example 7, Approach 1
Example 8

(B) 'One step at a time'

Refer to the following example(s):
Example 3, Approach 1
Example 3, Approach 1a

(C) 'Basic definition of probability’

number of favourable outcomes
number of possible outcomes
(provided the outcomes are equally likely)
Refer to the following example(s):
Example 2, Approach 1
Example 3, Approach 2
Example 5, Approach 2
Example 6, Approach 2

(D) 'Case by case’

Refer to the following example(s):
Example 2, Approach 1
Example 6, Approach 1

(E) Conditional Probability

Refer to the following example(s):
Example 1, Approach 2
Example 2, Approach 2
Example 7, Approach 2
Example 8

(F) Counting devices

(F.1) Solve problem for specific order, and then consider number of possible orders.

Refer to the following example(s):
Example 3, Approach 1a
Example 5, Approach 1
(F.2) 'One step at a time' (see (B))
(F.3) 'Case by case'
(F.4) Initially include non-permissible cases, and then deduct them.
(F.5) If items have to be next to each other, combine them into a single block of r items, and multiply by r !
(F.6) For r indistinguishable items, assume initially that they are different, and then remove duplication by dividing by r!
(F.7) Find a systematic way of listing the possible situations

(G) Recurrence relation

Refer to the following example(s):
Example 4
See also: STEP 2021, P2, Q11

(H) Venn diagram notation

(2) Examples

Example 1

A fair die is thrown repeatedly.
To find P (At least one 5 arises before the $1^{\text {st }} 6$)

Approach 1: Symmetry

This event is the same as "a 5 occurs before a 6 ", so the probability is $\frac{1}{2}$.

Approach 2: Conditional probability

$P(1$ st 6 arises on the rth throw $)=\left(\frac{5}{6}\right)^{r-1} \cdot \frac{1}{6}$
So P (At least one 5 arises before the $1^{\text {st }} 6$)
$=\sum_{r=2}^{\infty}\{P(1 s t) 6$ arises on rth throw $)[1-P(n o 5 s$ arise in 1 st
$r-1$ throws|no $6 s$ arise in the 1 st $r-1$ throws)]\}
[Noting that, if we know that a 6 has not arisen in the $1^{\text {st }} r-1$ throws, then at each throw there are only 5 possible (and equally likely) outcomes.]
$=\sum_{r=2}^{\infty}\left(\frac{5}{6}\right)^{r-1} \cdot \frac{1}{6}\left(1-\left(\frac{4}{5}\right)^{r-1}\right)$
$=\frac{5}{6} \cdot \frac{1}{6} \cdot \frac{1}{1-\frac{5}{6}}-\frac{1}{6} \sum_{r=2}^{\infty}\left(\frac{4}{6}\right)^{r-1}$
$=\frac{5}{6}-\frac{1}{6} \cdot \frac{4}{6} \cdot \frac{1}{1-\frac{4}{6}}$
$=\frac{5}{6}-\frac{4}{12}=\frac{1}{2}$

Example 2

A fair die is thrown repeatedly.
To find P (Exactly one 5 arises before the $1^{\text {st }} 6$)

Approach 1: 'Case by case’ (using 'Basic Definition')

Considering separately the cases where the $1^{\text {st }} 6$ arises on the $2^{\text {nd }}$, $3^{\text {rd }}, \ldots$ throws (as these are mutually exclusive and exhaustive events; ie they don't overlap and they include all possibilities)

Now P (one 5 and no sixes arise in the 1 st $r-1$ throws)
$=\frac{\text { no. of ways of one } 5 \text { and no sixes arising in the } 1 \text { st } r-1 \text { throws }}{\text { no.of possibilities for } 1 \text { st } r-1 \text { throws }}$
$=\frac{(r-1) \times 4^{r-2}}{6^{r-1}}$
[Consider eg $5412 \ldots 3$: there are 4^{r-2} ways of filling the last $r-2$ places with the numbers 1-4; and there are $r-1$ possible positions for the 5]

So P (Exactly one 5 arises before the $1^{\text {st }} 6$)
$=\sum_{r=2}^{\infty}\{P$ (one 5 and no sixes arise in the 1 st $r-1$ throws $)$.
$P(a 6$ arises on the rth throw $)\}$
$=\sum_{r=2}^{\infty} \frac{(r-1) \times 4^{r-2}}{6^{r-1}} \cdot \frac{1}{6}=\frac{1}{36} \sum_{r=2}^{\infty}(r-1)\left(\frac{4}{6}\right)^{r-2}$
$=\frac{1}{36} \sum_{R=1}^{\infty} R\left(\frac{2}{3}\right)^{R-1}$, where $R=r-1\left(^{*}\right.$
From Standard Results (1), $\sum_{r=1}^{\infty} r a^{r}=\frac{a}{(1-a)^{2}}($ when $|a|<1)$,
so that $\left(^{*}\right)=\frac{1}{36} \cdot \frac{3}{2} \frac{\left(\frac{2}{3}\right)}{\left(1-\frac{2}{3}\right)^{2}}=\frac{1}{36\left(\frac{1}{9}\right)}=\frac{1}{4}$

Approach 2: Conditional Probability

$P\left(\right.$ Exactly one 5 arises before the $\left.1^{\text {st }} 6\right)$
$=\sum_{r=2}^{\infty}\{P(1$ st 6 arises on rth throw $) P($ exactly one 5 arises in the 1 st
$r-1$ throws \mid no $6 s$ arise in the 1 st $r-1$ throws $)\}$
$=\sum_{r=2}^{\infty}\left(\frac{5}{6}\right)^{r-1} \cdot \frac{1}{6} \cdot\binom{r-1}{1}\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)^{r-2}$
$=\frac{5}{6} \cdot \frac{1}{6} \cdot \frac{1}{5} \sum_{r=2}^{\infty}(r-1)\left(\frac{4}{6}\right)^{r-2}$
$=\frac{1}{36} \sum_{R=1}^{\infty} R\left(\frac{2}{3}\right)^{R-1} \quad$ (where $R=r-1$) , as in Approach 1

Example 3

3 letters are selected from a bag containing the letters AAABBBCCC

To find P (3 different letters are chosen)
Approach 1: 'One step at a time'
$P(3$ different letters are chosen)
$=\mathrm{P}$ (any tablet is chosen initially)
$\times \mathrm{P}($ a different tablet is then chosen $)$
$\times \mathrm{P}($ a tablet different from the 1 st 2 is then chosen $)$
$=1 \times \frac{6}{8} \times \frac{3}{7}=\frac{9}{28}$

Approach 1a: 'One step at a time’

$\mathrm{P}(\mathrm{ABC}$ are chosen - in that order $)=\frac{3}{9} \times \frac{3}{8} \times \frac{3}{7}=\frac{3}{7 \times 8}$

As there are 3! ways of ordering ABC,
$P(3$ different letters are chosen $)=\frac{3}{7 \times 8} \times 3!=\frac{9}{28}$

Approach 2: 'Basic definition’

$P(3$ different letters are chosen)
$=\frac{\text { no. of ways of obtaining the letters } \mathrm{ABC} \text { (where order doesn't matter) }}{\text { no. of ways of chosing } 3 \text { letters out of } 9 \text { (where order doesn't matter) }}$
$=\frac{\binom{3}{1} \times\binom{ 3}{1} \times\binom{ 3}{1}}{\binom{9}{3}}=\frac{27}{\left(\frac{9(8)(7)}{3!}\right)}=\frac{9}{28}$

Example 4

A and B take it in turns to shoot arrows at a target, with A starting first. The probability that A hits the target is a and the probability that B hits the target is b. The winner is the person who hits the target first. Find the probability that A wins.

Solution

Let α be the probability that A wins.
Then $\alpha=\mathrm{P}(\mathrm{A}$ wins on 1 st attempt $)+\mathrm{P}($ wins after 1 st attempt $)$
$=a+(1-a)(1-b) \alpha$, so that $\alpha(1-(1-a)(1-b))=a$, and
$\alpha=\frac{a}{1-(1-a)(1-b)}$

Example 5

n boys and 3 girls are to be seated in a row at random; K is the maximum consecutive number of girls in the row; find $P(K=3)$

Approach 1

$P(G G G B \ldots B)=\frac{3}{n+3} \cdot \frac{2}{n+2} \cdot \frac{1}{n+1}$
There are $n+1$ possibilities in total (the $1^{\text {st }} \mathrm{G}$ can be in positions 1 to $n+1$), and they are all equally likely.

So $P(K=3)=\frac{3}{n+3} \cdot \frac{2}{n+2} \cdot \frac{1}{n+1} \cdot(n+1)=\frac{6}{(n+2)(n+3)}$

Approach 2 ('Basic definition')
There are $\binom{n+3}{3}$ equally likely ways of choosing the 3 positions for the Gs, and the Gs will be together in $n+1$ of these (as in Approach 1).

So $P(K=3)=\frac{n+1}{\binom{n+3}{3}}=\frac{(n+1)(3!)}{(n+3)(n+2)(n+1)}=\frac{6}{(n+2)(n+3)}$

Example 6

n boys and 3 girls are to be seated in a row at random; K is the maximum consecutive number of girls in the row; find $P(K=1)$

Approach 1

Let $P=G B$
Case 1: The last child is not a girl.
Examples: $B B P B B P B P, B B P P P B$
Case 2: The last child is a girl.
Examples: $B B P B B P B G, B B P B B P G$

The number of possibilities for Case 1 (with n boys \& 3 girls, and therefore 3 Ps \& $(n-3) B s)$ is $\binom{n}{3}$

The number of possibilities for Case 2
(with 2 Ps, $(n-2)$ Bs \& the G at the end) is $\binom{n}{2}$
All the possibilities have probability $\frac{3}{n+3} \cdot \frac{2}{n+2} \cdot \frac{1}{n+1}$ (from Example 5).

So $P(K=1)=\frac{6}{(n+3)(n+2)(n+1)}\left\{\binom{n}{3}+\binom{n}{2}\right\}$
$=\frac{6}{(n+3)(n+2)(n+1)}\left\{\frac{n(n-1)(n-2)}{3!}+\frac{n(n-1)}{2!}\right\}$
$=\frac{n(n-1)(n-2+3)}{(n+3)(n+2)(n+1)}=\frac{n(n-1))}{(n+3)(n+2)}$

Approach 2

Consider $X B X B X \ldots B X$ (with alternating X \& B).
3 of the $n+1$ Xs will be filled by the girls, with the remaining Xs being empty. This can be done in $\binom{n+1}{3}$ ways.

Overall there are $\binom{n+3}{3}$ ways of arranging the n boys and 3 girls.
So $P(K=1)=\frac{\binom{n+1}{3}}{\binom{n+3}{3}}=\frac{\left(\frac{(n+1)!}{3!(n-2)!}\right)}{\left(\frac{(n+3)!}{3!n!}\right)}=\frac{n(n-1)}{(n+3)(n+2)}$

Example 7

A bag contains N balls (where $N \geq 2$), of which n are white. Two balls are drawn from the bag without replacement. Show that the probability that the $1^{\text {st }}$ ball is white is equal to the probability that the 2 nd ball is white.

Approach 1: Symmetry
Drawing one ball and then another is no different from putting both hands into the bag and drawing a ball with each hand, but designating the right-hand ball as the 1st drawn. But alternatively we could have designated the left-hand ball as the 2nd drawn.

Approach 2: Conditional Probability

$$
\begin{aligned}
& P(1 \text { st is } W)=\frac{n}{N} \\
& P(2 n d \text { is } W)=P(1 \text { st is } W) P(2 n d \text { is } W \mid 1 \text { st is } W) \\
& +P(1 \text { st is not } W) P(2 n d \text { is } W \mid 1 \text { st is not } W) \\
& =\left(\frac{n}{N}\right)\left(\frac{n-1}{N-1}\right)+\left(\frac{N-n}{N}\right)\left(\frac{n}{N-1}\right) \\
& =\frac{n}{N(N-1)}(n-1+N-n)=\frac{n}{N}=P(1 \text { st is } W), \text { as required }
\end{aligned}
$$

Example 8

A (possibly biased) coin is tossed repeatedly in a game between A and B, with p being the probability of obtaining a head, and $q=$ $1-p$ the probability of obtaining a tail. A wins if two successive heads appear, and B wins if two successive tails appear. It can be assumed that the game will end eventually. Find the probability that A wins.

Solution

Step 1

$\mathrm{P}(\mathrm{A}$ wins $\mid 1$ st toss is H$)$
$=\mathrm{P}(2$ nd toss is H$)$
$+\sum_{r=1}^{\infty} \mathrm{P}(2 \mathrm{nd}$ toss is T and A wins on $(2 \mathrm{r}+2)$ nd toss
|1st toss is H)
$=p+\sum_{r=1}^{\infty} q(p q)^{r-1} p^{2}$
$=p+q p^{2} \cdot \frac{1}{1-p q}$
$=\frac{p(1-p q)+q p^{2}}{1-p q}$
$=\frac{p}{1-p q}$

Step 2

By symmetry, $\mathrm{P}(\mathrm{B}$ wins $\mid 1$ st toss is T$)=\frac{q}{1-q p}$
And $\mathrm{P}(\mathrm{A}$ wins $\mid 1$ st toss is T$)=1-\mathrm{P}(\mathrm{B}$ wins $\mid 1$ st toss is T$)$
$=1-\frac{q}{1-q p}=\frac{1-q p-q}{1-q p}=\frac{p-q p}{1-q p}=\frac{p(1-q)}{1-q p}=\frac{p^{2}}{1-q p}$
[Alternatively, $\mathrm{P}(\mathrm{A}$ wins $\mid 1$ st toss is T$)$
$=\mathrm{P}(2$ nd toss is H$) . \mathrm{P}(\mathrm{A}$ wins $\mid 1$ st toss is H$)$
$\left.=p \cdot \frac{p}{1-p q}=\frac{p^{2}}{1-q p}\right]$

Step 3

$P(A$ wins $)=p . \mathrm{P}(\mathrm{A}$ wins $\mid 1$ st toss is H$)$
$+q . \mathrm{P}(\mathrm{A}$ wins $\mid 1$ st toss is T$)$
$=p \cdot \frac{p}{1-p q}+q \cdot \frac{p^{2}}{1-q p}$
$=\frac{p^{2}(1+q)}{1-p q}$
[Check: By symmetry, $P(B$ wins $)=\frac{q^{2}(1+p)}{1-q p}$
and $\frac{p^{2}(1+q)}{1-p q}+\frac{q^{2}(1+p)}{1-q p}=\frac{p^{2}+p^{2} q+q^{2}+q^{2} p}{1-p q}=\frac{p^{2}+q^{2}+p q(p+q)}{1-p q}$
$\left.=\frac{p^{2}+q^{2}+p q}{1-p q}=\frac{p(p+q)+q^{2}}{1-p q}=\frac{p+q^{2}}{1-p q}=\frac{1-q+q^{2}}{1-p q}=\frac{1-q(1-q)}{1-p q}=\frac{1-q p}{1-p q}=1\right]$

Appendix: Standard results

(1) $\sum_{r=1}^{\infty} r a^{r}=a \frac{d}{d a} \sum_{r=1}^{\infty} a^{r}=a \frac{d}{d a}\left(\frac{a}{1-a}\right) \quad($ when $|a|<1)$
$=a \cdot \frac{(1-a)-a(-1)}{(1-a)^{2}}=\frac{a}{(1-a)^{2}}$

