Polynomials – Q7 (26/6/23)

If α , β and γ are the roots of the equation

 $x^3 - 2x^2 - 4x + 5 = 0,$

find the equation with roots $\alpha + \beta \gamma$, $\beta + \alpha \gamma$ and $\gamma + \alpha \beta$.

Solution

Let the new equation be $x^3 + bx^2 + cx + d = 0$

Then
$$b = -(\alpha + \beta \gamma + \beta + \alpha \gamma + \gamma + \alpha \beta)$$

= $-\sum \alpha - \sum \alpha \beta = -2 - (-4) = 2$

$$c = (\alpha + \beta \gamma)(\beta + \alpha \gamma) + (\alpha + \beta \gamma)(\gamma + \alpha \beta) + (\beta + \alpha \gamma)(\gamma + \alpha \beta)$$
$$= (\alpha \beta + \alpha^2 \gamma + \beta^2 \gamma + \alpha \beta \gamma^2) + \dots$$

[By symmetry, this contains all the types of terms appearing in the full expansion, and there are 3(4) = 12 terms.]

$$= \sum \alpha \beta + \sum \alpha^2 \beta + \sum \alpha \beta \gamma^2$$

[As a check, this contains 3 + 6 + 3 = 12 terms]

Thus
$$c = (-4) + \sum \alpha^2 \beta + \alpha \beta \gamma \sum \alpha$$

 $(-4) + \sum \alpha^2 \beta + (-5)(2) = -14 + \sum \alpha^2 \beta$ (A)
 $[\sum \alpha^2 \beta$ to be found shortly]
And $d = -(\alpha + \beta \gamma)(\beta + \alpha \gamma)(\gamma + \alpha \beta)$

[this will give $2^3 = 8$ terms]

$$= -(\alpha\beta\gamma + (\sum \alpha^2\beta^2) + \alpha^2\beta^2\gamma^2 + \sum \alpha^3\beta\gamma)$$

[This can be obtained by performing the expansion, but only noting the types of term (some of which are repeated).]

$$[1 + 3 + 1 + 3 = 8 \text{ terms}]$$

Thus $d = -(-5) - \sum \alpha^2 \beta^2 - (-5)^2 - \alpha \beta \gamma \sum \alpha^2$
 $= -20 - \sum \alpha^2 \beta^2 - (-5) \sum \alpha^2$ (B)

So we need to find $\sum \alpha^2$, $\sum \alpha^2 \beta^2 \& \sum \alpha^2 \beta$

First of all, consider $(\alpha + \beta + \gamma)^2 = \sum \alpha^2 + 2 \sum \alpha \beta$, so that $\sum \alpha^2 = 2^2 - 2(-4) = 12$

We can also consider $(\alpha\beta + \alpha\gamma + \beta\gamma)^2 = \sum (\alpha\beta)^2 + 2\sum \alpha^2\beta\gamma$ [giving 3 + 2(3) = 9 terms] so that $\sum \alpha^2\beta^2 = (-4)^2 - 2\alpha\beta\gamma\sum\alpha = 16 - 2(-5)(2) = 36$

Then
$$(\alpha + \beta + \gamma)(\alpha\beta + \alpha\gamma + \beta\gamma) = (\sum \alpha^2 \beta) + 3\alpha\beta\gamma$$

[3(2) + 3 = 9 terms]
so that $\sum \alpha^2 \beta = 2(-4) - 3(-5) = 7$

Hence, from (A), $c = -14 + \sum \alpha^2 \beta = -14 + 7 = -7$ and, from (B), $d = -20 - \sum \alpha^2 \beta^2 - (-5) \sum \alpha^2 = -20 - 36 + 5(12) = 4$

And so the required equation is $x^3 + 2x^2 - 7x + 4 = 0$

[In this example we can use the Factor theorem to see that α (*say*) = 1, and that β , $\gamma = \frac{1 \pm \sqrt{21}}{2}$, which leads to $\alpha + \beta \gamma$ etc being -4, 1 & 1, enabling the new equation to be confirmed. In general of course, we may not be able to find a root by the Factor theorem.]