Polynomials - Q4 (26/6/23)

Find the roots of the equation $x^{3}-14 x^{2}+56 x-64=0$, given that they form a geometric progression.

Let the roots be $\frac{\alpha}{r}, \alpha \& r \alpha$
Then $\frac{\alpha}{r} \cdot \alpha \cdot r \alpha=64$, so that $\alpha=4$
Also $\frac{\alpha}{r}+\alpha+r \alpha=14$, so that $\frac{1}{r}+1+r=\frac{7}{2}$
Then $2\left(1+r+r^{2}\right)=7 r$ and $2 r^{2}-5 r+2=0$
Hence $(2 r-1)(r-2)=0$ and so $r=\frac{1}{2}$ or 2
Thus the roots are 2,4 and 8 .

