Polynomials - Q4 (26/6/23)

Find the roots of the equation $x^3 - 14x^2 + 56x - 64 = 0$,

given that they form a geometric progression.

Solution

Let the roots be $\frac{\alpha}{r}$, $\alpha \& r\alpha$ Then $\frac{\alpha}{r} \cdot \alpha \cdot r\alpha = 64$, so that $\alpha = 4$ Also $\frac{\alpha}{r} + \alpha + r\alpha = 14$, so that $\frac{1}{r} + 1 + r = \frac{7}{2}$ Then $2(1 + r + r^2) = 7r$ and $2r^2 - 5r + 2 = 0$ Hence (2r - 1)(r - 2) = 0 and so $r = \frac{1}{2}$ or 2 Thus the roots are 2, 4 and 8.