Polynomials - Q1 (26/6/23)

If the quadratic equation $2 x^{2}+5 x-9=0$ has roots α and β, find the quadratic equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

Solution

Method 1

$\alpha+\beta=-\frac{5}{2}$ and $\alpha \beta=-\frac{9}{2}$
Let the new equation be $x^{2}+b x+c=0$
Then $\frac{1}{\alpha}+\frac{1}{\beta}=-b$ and $\frac{1}{\alpha} \cdot \frac{1}{\beta}=c$,
so that $b=\frac{-(\alpha+\beta)}{\alpha \beta}=-\frac{5}{9}$ and $c=-\frac{2}{9}$
and the new equation is $x^{2}-\frac{5 x}{9}-\frac{2}{9}=0$
or $9 x^{2}-5 x-2=0$
[Note that, if written as $-9 x^{2}+5 x+2=0$, then the coefficients of the original equation are reversed.]

Method 2

Let $u=\frac{1}{x}$, so that $x=\frac{1}{u}$
Then $2\left(\frac{1}{u}\right)^{2}+\frac{5}{u}-9=0$
and $2+5 u-9 u^{2}=0$ or $9 u^{2}-5 u-2=0$

