Q1

If the quadratic equation $2 x^{2}+5 x-9=0$ has roots α and β, find the quadratic equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

Q2

If the roots of the equation $x^{3}-14 x^{2}+56 x-64=0$ are $\alpha, \beta \& \gamma$, find the equation with roots $\frac{1}{\alpha}, \frac{1}{\beta} \& \frac{1}{\gamma}$

Q3

If the roots of the equation $x^{2}+x-13=0$ are $\alpha \& \beta$, find the equation with roots $2 \alpha+3 \beta \& 3 \alpha+2 \beta$

Q4

Find the roots of the equation $x^{3}-14 x^{2}+56 x-64=0$, given that they form a geometric progression.

Q5

If the roots of the equation $x^{5}+b x^{4}+c x^{3}+\mathrm{d} x^{2}+e x+f=0$ are 5 consecutive positive integers, find expressions for these roots.

Q6

If α, β and γ are the roots of the equation
$x^{3}-14 x^{2}+56 x-64=0$,
find the equation with roots $\alpha \beta, \alpha \gamma$ and $\beta \gamma$.

Q7

If α, β and γ are the roots of the equation
$x^{3}-2 x^{2}-4 x+5=0$,
find the equation with roots $\alpha+\beta \gamma, \beta+\alpha \gamma$ and $\gamma+\alpha \beta$.

Q8
If the roots of the equation $x^{3}+x^{2}+x+1=0$ are $\alpha, \beta \& \gamma$, find the equation with roots $\alpha+1, \beta+1 \& \gamma+1$

