Polar Curves Overview (16/6/23)

Q1 [Practice/M]

(i) Sketch the curve $r=5+4 \cos \theta$, explaining how you obtained your sketch. [Do not obtain your curve entirely by plotting points.]
(ii) Without converting the curve to cartesian form, find the greatest negative x-coordinate of a point on the curve.
(iii) Determine the area enclosed by the curve.

Q2 [Practice/E]

Convert the curve $(x-1)^{2}+y^{2}=1$ to polar form.

Q3 [Practice/M]

Convert the curve $r=\frac{2}{1+\cos \theta}$ to cartesian form, and sketch the curve, based on its cartesian form.

Q4 [Practice/H]

(i) Sketch the curve $r^{2}=\sin 2 \theta$.
(ii) Show how to sketch the curve $r^{2}=\cos 2 \theta$ by applying a transformation to $r^{2}=\sin 2 \theta$.
(iii) Find the largest y-coordinate of the curve $r^{2}=\sin 2 \theta$.

A curve has polar equation $r=3(\cos \theta+2 \sin \theta)$, for $0 \leq \theta \leq \pi$.
(i) Show that the curve is a circle.
(ii) Determine the polar coordinates of the point on the curve which is furthest from the pole.

