Polar Curves Overview (16/6/23)

Q1 [Practice/M]

(i) Sketch the curve $r = 5 + 4\cos\theta$, explaining how you obtained your sketch. [Do not obtain your curve entirely by plotting points.]

(ii) Without converting the curve to cartesian form, find the greatest negative x-coordinate of a point on the curve.

(iii) Determine the area enclosed by the curve.

Q2 [Practice/E]

Convert the curve $(x - 1)^2 + y^2 = 1$ to polar form.

Q3 [Practice/M]

Convert the curve $r = \frac{2}{1+cos\theta}$ to cartesian form, and sketch the curve, based on its cartesian form.

Q4 [Practice/H]

(i) Sketch the curve $r^2 = sin2\theta$.

(ii) Show how to sketch the curve $r^2 = cos2\theta$ by applying a transformation to $r^2 = sin2\theta$.

(iii) Find the largest *y*-coordinate of the curve $r^2 = sin2\theta$.

Q5 [Practice/M]

A curve has polar equation $r = 3(\cos\theta + 2\sin\theta)$, for $0 \le \theta \le \pi$.

(i) Show that the curve is a circle.

(ii) Determine the polar coordinates of the point on the curve which is furthest from the pole.