Polar Curves - Q5 [Practice/M](16/6/23)

A curve has polar equation $r=3(\cos \theta+2 \sin \theta)$, for $0 \leq \theta \leq \pi$.
(i) Show that the curve is a circle.
(ii) Determine the polar coordinates of the point on the curve which is furthest from the pole.

Solution

(i) $r=3(\cos \theta+2 \sin \theta) \Rightarrow r^{2}=3 r \cos \theta+6 r \sin \theta$,
$\Rightarrow x^{2}+y^{2}=3 x+6 y$
$\Rightarrow\left(x-\frac{3}{2}\right)^{2}+(y-3)^{2}-\frac{3^{2}}{4}-3^{2}=0$
$\Rightarrow\left(x-\frac{3}{2}\right)^{2}+(y-3)^{2}=\frac{5(9)}{4} ;$ ie a circle with radius $\frac{3 \sqrt{5}}{2}$
(ii) $\frac{d r}{d \theta}=3(-\sin \theta+2 \cos \theta)$
$\frac{d r}{d \theta}=0 \Rightarrow \tan \theta=2($ as $\cos \theta \neq 0)$
$\frac{d^{2} r}{d \theta^{2}}=3(-\cos \theta-2 \sin \theta)=-3 \cos \theta(1+2 \tan \theta)($ when $\cos \theta \neq 0)$
So when $\tan \theta=2, \frac{d^{2} r}{d \theta^{2}}<0$, as $0<\theta<\frac{\pi}{2}$, so that $\cos \theta>0$,
and hence r is a maximum when $\tan \theta=2$
When $\tan \theta=2, \sec ^{2} \theta=2^{2}+1=5$,
so that $\cos \theta=\sqrt{\frac{1}{5}}($ as $\cos \theta>0)$
and $r=3 \cos \theta(1+2 \tan \theta)=\frac{3}{\sqrt{5}}(1+4)=3 \sqrt{5}$
The polar coordinates are thus $\left(3 \sqrt{5}, \tan ^{-1} 2\right)$.

