Polar Curves - Q4 [Practice/H](12/6/21)
(i) Sketch the curve $r^{2}=\sin 2 \theta$.
(ii) Show how to sketch the curve $r^{2}=\cos 2 \theta$ by applying a transformation to $r^{2}=\sin 2 \theta$.
(iii) Find the largest y-coordinate of the curve $r^{2}=\sin 2 \theta$.

Solution

(i) Step 1: As $r= \pm \sqrt{\sin 2 \theta}$ isn't a function of either $\cos \theta$ or $\sin \theta$, there is no symmetry about the x or y axis.

Step 2: The curve isn't defined for $\frac{\pi}{2}<\theta<\pi$ or for $\frac{3 \pi}{2}<\theta<2 \pi$ (as $\sin 2 \theta<0$).

Step 3: For each θ there will positive and negative values of r of the same magnitude. [However the negative values of r for θ will overlap with the positive values for $\theta+\pi$.]

Step 4: Key points to plot are: $\theta=0, r=0 ; \theta=\frac{\pi}{4}, r= \pm 1 ; \theta=$ $\frac{\pi}{2}, r=0$ (and the cycle repeats itself for $\theta=\pi$ to $\theta=\frac{3 \pi}{2}$).

Step 5: The gradient at $\theta=0$ (when $r=0$) is 0 (ie along the line $\theta=0$), and at $\theta=\frac{\pi}{2}$ it is ∞ (ie along the line $\theta=\frac{\pi}{2}$).

(ii) $r=1$ when $\theta=\frac{\pi}{4}$ for $r^{2}=\sin 2 \theta$, and when $\theta=0$ for $r^{2}=$ $\cos 2 \theta$, so the curve for $r^{2}=\sin 2 \theta$ needs to be rotated by $\frac{\pi}{4}$ clockwise.
[This rotation transforms $r^{2}=\sin 2 \theta$ to $r^{2}=\sin 2\left(\theta+\frac{\pi}{4}\right)$ [as clockwise is the negative direction] $\left.=\sin \left(2 \theta+\frac{\pi}{2}\right)=\cos 2 \theta\right]$
(iii) $y=r \sin \theta, r^{2}=\sin 2 \theta \Rightarrow y^{2}=\sin 2 \theta \cdot \sin ^{2} \theta$
$\Rightarrow 2 y \frac{d y}{d \theta}=2 \cos 2 \theta \sin ^{2} \theta+\sin 2 \theta(2 \sin \theta \cos \theta)$
Then $\frac{d y}{d \theta}=0 \Rightarrow\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin ^{2} \theta+(2 \sin \theta \cos \theta)(\sin \theta \cos \theta)=$ 0
$\Rightarrow 3 \cos ^{2} \theta \sin ^{2} \theta-\sin ^{4} \theta=0$
$\Rightarrow \sin ^{2} \theta\left(3 \cos ^{2} \theta-\sin ^{2} \theta\right)=0$
$\Rightarrow \sin ^{2} \theta\left(3 \cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)\right)=0$
$\Rightarrow \sin ^{2} \theta\left(4 \cos ^{2} \theta-1\right)=0$
$\Rightarrow \theta=0$ or π (within $[0,2 \pi)$) (ie when the curve is at the Origin)
or $\cos \theta= \pm \frac{1}{2}$, so that $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$ or $\frac{5 \pi}{3}$
The curve doesn't exist for $\theta=\frac{2 \pi}{3}$ and $\frac{5 \pi}{3}$, and so the required value is
$\theta=\frac{\pi}{3}$ (when the y-coordinate is positive).
At $\theta=\frac{\pi}{3}, y^{2}=\sin 2 \theta \cdot \sin ^{2} \theta=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)^{2}=\left(\frac{\sqrt{3}}{2}\right)^{3}$

