Polar Curves – Q3 [8 marks](12/6/21)

Exam Boards

OCR : Pure Core (Year 2)

MEI: Core Pure (Year 2)

AQA: Pure (Year 2)

Edx: Core Pure (Year 2)

Convert the curve $r = \frac{2}{1 + cos\theta}$ to cartesian form, and sketch the curve, based on its cartesian form. [8 marks]

Solution

$$r = \frac{2}{1+\cos\theta}; x = r\cos\theta \text{ and } y = r\sin\theta \text{ [1 mark]}$$

Also $r^2 = x^2 + y^2$
So $r + r\cos\theta = 2 \Rightarrow r = 2 - x \Rightarrow r^2 = (2 - x)^2 \text{ [1 mark]}$
 $\Rightarrow x^2 + y^2 = 4 + x^2 - 4x \Rightarrow y^2 = 4(1 - x) \text{ [2 marks]}$

This can be obtained from the parabola $y^2 = 4x$ by the following steps:

 $y^2 = 4(-x) = -4x$ [reflection in the *y*-axis; note that the curve now only exists for negative *x*] [1 mark]

$$y^{2} = -4(x - 1) = 4(1 - x)$$
 [translation of $\binom{1}{0}$] [1 mark]

[2 marks]