Polar Curves - Q1 [13 marks](12/6/21)

Exam Boards
OCR : Pure Core (Year 2)
MEI: Core Pure (Year 2)
AQA: Pure (Year 2)
Edx: Core Pure (Year 2)
(i) Sketch the curve $r=5+4 \cos \theta$, explaining how you obtained your sketch. [Do not obtain your curve entirely by plotting points.] [5 marks]
(ii) Without converting the curve to cartesian form, find the greatest negative x-coordinate of a point on the curve. [4 marks] (iii) Determine the area enclosed by the curve. [4 marks]

Solution

(i) $r=5+4 \cos \theta$

Step 1: As r is a function of $\cos \theta$, the curve will be symmetric about the x-axis. [1 mark]

Step 2: $r>0$ at all times [1 mark]
Step 3: Key points to plot are $\theta=0, r=9 ; \theta=\frac{\pi}{2}, r=5 ; \theta=$ $\pi, r=1$

[3 marks]
(ii) The required x-coordinate can be found by investigating the vertical tangents; ie when $\frac{d x}{d \theta}=0$ [when the x-coordinate is (instantaneously) not changing as θ changes] [1 mark]
$x=r \cos \theta=(5+4 \cos \theta) \cos \theta$
so that $\frac{d x}{d \theta}=(-4 \sin \theta) \cos \theta+(5+4 \cos \theta)(-\sin \theta)=$ $-8 \sin \theta \cos \theta-5 \sin \theta \quad$ [1 mark]

Then $\frac{d x}{d \theta}=0 \Rightarrow \sin \theta=0$ (ie $\theta=0$ or π) or $\cos \theta=-\frac{5}{8}$ [1 mark]
$\Rightarrow x=(5+4 \cos \theta) \cos \theta=\left(5-\frac{20}{8}\right)\left(-\frac{5}{8}\right)=-\frac{25}{16}$ [1 mark]
(iii) Area enclosed by curve $=2 \int_{0}^{\pi} \frac{1}{2}(5+4 \cos \theta)^{2} d \theta$ [1 mark]
$=\int_{0}^{\pi} 25+16 \cos ^{2} \theta+40 \cos \theta d \theta$
$=\int_{0}^{\pi} 25+8(1+\cos 2 \theta)+40 \cos \theta d \theta \quad[1 \mathrm{mark}]$
$=[33 \theta+4 \sin 2 \theta+40 \sin \theta]_{0}^{\pi}[1$ mark $]$
$=33 \pi$ [1 mark]
[Rough check: Area of rectangle of base 11 and height 10 is approx. 35π]

