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Poisson Distribution (7 pages; 26/1/19) 

(1) This is a discrete distribution, where 

𝑃(𝑋 = 𝑟) = 𝑒−𝜆 𝜆𝑟

𝑟!
   (𝑟 = 0,1,2, … )    

This is the probability of 𝑟 events occurring in a specified interval 

(usually of time, but sometimes length). [In these notes, a period 

of time will usually be assumed, but any comments will apply 

equally to intervals of length.] 

We say that 𝑋~𝑃𝑜(𝜆), and we shall see that 𝐸(𝑋) = 𝜆. 

 

(2) Examples 

Number of fires that break out in a certain city over a period of 1 

hour 

Goals scored in a football match 

Number of buses passing a particular point in a given time 

Faults in a given length of material 

 

(3) A Poisson model can be thought of as the limiting case of a 

Binomial model, with 𝑋~𝐵(𝑛, 𝑝), as 𝑛 → ∞ & 𝑝 → 0, in such a way 

that 𝜆 = 𝑛𝑝 is a constant. 

Thus the 𝑛 trials of the Binomial model become infinitesimal 

portions of a continuous interval. 

 

(4) It can be shown that  𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ 

and so  ∑ 𝑒−𝜆 𝜆𝑟

𝑟!
=  𝑒−𝜆 ∑

𝜆𝑟

𝑟!
∞
𝑟=0 =  𝑒−𝜆. 𝑒𝜆 = 1∞

𝑟=0 , 

as required for a probability distribution. 
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(5) Conditions required for a Poisson model to be appropriate 

(i) Events are ‘rare’ and occur singly. 

Thus, in the fire example, there are appreciable gaps between the 

moments when fires break out. (Even though there may be, say, 3 

fires occurring in one hour on average, this counts as 'rare'.) 

[However, this is not usually as important as the following two 

conditions.] 

(ii) Events are random and occur independently of each other. 

As an example of a (non-Poisson) variable, where the events are 

random, but not independent: it could be the case that once an 

event has occurred, the probability of another occurring over a 

given period is changed. (Two events are independent if the 

probability of one of them occurring is not affected by the 

occurrence of the other.) 

As an example of a (non-Poisson) variable, where the events are 

independent but not random, it could be the case that events are 

bound to occur at certain times. 

(iii) Events occur at a uniform rate over the specified period. 

There is scope for confusion here in the use of the word 'uniform' 

(or 'constant'). Note first of all that each Poisson distribution has 

a specific period associated with it (such that 𝜆 is the mean 

number of occurrences in that period). 

Example 1: Goals scored in a football match 

Say that the period associated with the distribution is the 

duration of the match. Suppose that data has been collected, 

based on a large number of matches, and we are told that, on 

average, there are 2.3 goals per match. Then, the condition about 

the uniform rate means that, if we were to consider any part of 

the match, then the expected number of goals would be 
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proportionately reduced (eg it would be 0.23 for a period of 
1

10
  of 

the match). 

One objection to the model could be that the figure of 2.3 was not 

applicable in a particular match (if one team was particularly 

strong, say). This may be a valid objection (and it could be 

described as the rate 'not being constant'), but it isn't anything to 

do with the condition that 'events occur at a uniform rate over the 

specified period'. 

Example 2: Fires breaking out in a city 

Here it could be the case that data has been collected over a 

period of 24 hours (unwisely), but that the period associated with 

the distribution is only 3 hours (so that we are interested in the 

probability of a certain number of fires occurring in a 3 hour 

period). 

An obvious objection to the model is that the rate of fires 

occurring is going to vary considerably over a 24 hour period, so 

that the average rate obtained is unlikely to be representative of 

most 3 hour periods. 

Once again, this is a separate issue to the consideration of 

whether the rate is uniform over the 3 hour period. For most 3 

hour periods, we can reasonably assume that the rate will be 

uniform.  

(iv) There is another condition, relating to the variance of the 

distribution, which will be discussed later. 

 

Conditions (i)-(iii) can often overlap, depending on the situation. 

In the case of buses passing a particular point, for example, we 

could make the following comments: 
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(a) As buses often arrive together at a stop (ie they bunch up), the 

events are arguably not always occurring singly, and they are not 

independent. 

(b) The bus timetable means that events don't occur at a uniform 

rate over the period, and are not random. 

 

Exam mark schemes are not going to be concerned with the finer 

subtleties of the issues. The points to make will be: 

(i) Standard comments; ie  

(a) random and independent [don't give 'random' and 

'independent' as separate points, if asked for two points] 

(b) uniform rate 

(c) ‘rare’ and occur singly [this is usually of less importance than 

(a) and (b)] 

(ii) Obvious 'context' points (eg the issue above of the number of 

goals depending on the standard of the teams in question) 

Be wary of making original points, as they won't be on the mark 

scheme, and may well attract no marks if they cannot be linked to 

an idea on the mark scheme. 

 

(6) Cumulative probability tables exist (see Appendix), but the 

2017 specifications assume that calculators will be used. 

If an exam question doesn't specify otherwise, it is usually safe to 

use a calculator. (However, it is probably best to do simple 

calculations such as 𝑃(𝑋 = 2) manually, and just do cumulative 

probabilities on the calculator.) 

Notes: 

(i) 𝑃(𝑋 > 𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥) 
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(ii) 𝑃(𝑋 = 𝑥) = 𝑃(𝑋 ≤ 𝑥) − 𝑃(𝑋 ≤ 𝑥 − 1)  

[as an alternative to using the formula  𝑃(𝑋 = 𝑥) = 𝑒−𝜆 𝜆𝑥

𝑥!
] 

 

(7) Shape of the Poisson distribution 

 

 

 

 

 

 

 

 

As 𝜆 increases, the Poisson distribution moves from being 

positively skewed to being approximately symmetrical and 

Normal (at about 𝜆 = 10), and for this reason the cumulative 

Poisson tables don't extend beyond 𝜆 = 10, as a Normal 

approximation can be used instead (see separate note). 

 

(8) Mean of the Poisson distribution 

Method 1 

E(X) = ∑ 𝑟∞
𝑟=0 𝑒−𝜆 𝜆𝑟

𝑟!
=  ∑ 𝑟∞

𝑟=1 𝑒−𝜆 𝜆𝑟

𝑟!
= 𝜆𝑒−𝜆 ∑ 𝑟∞

𝑟=1
𝜆𝑟−1

𝑟!
 

= 𝜆𝑒−𝜆 ∑  ∞
𝑟=1

𝜆𝑟−1

(𝑟−1)!
= 𝜆𝑒−𝜆 ∑  ∞

𝑢=0
𝜆𝑢

𝑢!
= (𝜆𝑒−𝜆)𝑒𝜆 = 𝜆  

Method 2 

∑ 𝑟∞
𝑟=1

𝜆𝑟−1

𝑟!
= ∑ 𝑟∞

𝑟=0
𝜆𝑟−1

𝑟!
 = 

𝑑

𝑑𝜆
 (∑

𝜆𝑟

𝑟!
)∞

𝑟=0 =  
𝑑

𝑑𝜆
(𝑒𝜆) =  𝑒𝜆 
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so that E(X) = 𝜆𝑒−𝜆 𝑒𝜆 = 𝜆 

 

(9) Variance of the Poisson distribution 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2  

= 𝐸[𝑋(𝑋 − 1)] + 𝐸(𝑋) − [𝐸(𝑋)]2   

𝐸[𝑋(𝑋 − 1)] = ∑ 𝑟(𝑟 − 1)𝑒−𝜆∞
𝑟=0

𝜆𝑟

𝑟!
  

= 𝜆2𝑒−𝜆 ∑ 𝑟(𝑟 − 1)∞
𝑟=0

𝜆𝑟−2

𝑟!
  

= 𝜆2𝑒−𝜆 𝑑2

𝑑𝜆2  (∑
𝜆𝑟

𝑟!
)∞

𝑟=0 = 𝜆2𝑒−𝜆 𝑑2

𝑑𝜆2 (𝑒𝜆) =  𝜆2𝑒−𝜆𝑒𝜆 = 𝜆2  

 so that 𝑉𝑎𝑟(𝑋) = 𝜆2 + 𝜆 − 𝜆2 = 𝜆 

 

(10) Another Poisson condition 

Using the fact that 𝑉𝑎𝑟(𝑋) = 𝜆,  any Poisson data can be studied, 

to see if  �̅�  and 𝑠2 are suitably close, and (assuming that this is the 

case) �̅�  can be used as an estimate for 𝜆. 

 

 

(11) Sum of Poisson distributions 

If  𝑋~𝑃𝑜(𝜆)  and 𝑌~𝑃𝑜(𝜇), then it can be shown that 

 𝑋 + 𝑌~𝑃𝑜(𝜆 + 𝜇), provided that X and Y are independent  

eg  X = number of single-decker buses passing in an hour, and 

Y = number of double-decker buses passing in an hour 

Note: In theory, the two variables could relate to different time 

intervals (or even to a time interval and a length), but in that case 

𝑋 + 𝑌 would not usually have any practical significance. 
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Appendix: Cumulative probability tables 

 

 


