Parabolas Q5 [Problem/H](30/5/21)

Find the cartesian equations of the parabolas with:
(i) focus $(4,4)$ and directrix $y=0$
(ii) focus $(1,1)$ and directrix $x+y+2=0$

Find the cartesian equations of the parabolas with:
(i) focus $(4,4)$ and directrix $y=0$
(ii) focus $(1,1)$ and directrix $x+y+2=0$

Solution

(i) The shortest distance from the focus to the directrix is $2 a$, so $a=2$.

Starting from the parabola with focus $(0,2)$ and directrix $y=-2$ (with eq'n $x^{2}=4 a y=8 y$), we need to make a translation of $\binom{4}{2}$, so that the eq'n becomes $(x-4)^{2}=8(y-2)=8 y-16$
(ii) The directrix is $y=-x-2$ (see diagram), and so $a=\sqrt{2}$

For general a, the parabola is obtained by rotating $y^{2}=$ 4ax through 45° anti-clockwise.

Let the point (x, y) be transformed to the point (u, v) under the rotation.

Then $\binom{u}{v}=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)\binom{x}{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)\binom{a t^{2}}{2 a t}$
$=\frac{1}{\sqrt{2}}\binom{a t^{2}-2 a t}{a t^{2}+2 a t}$
Then $v-u=\frac{4 a t}{\sqrt{2}}$, so that $v=\frac{a t}{\sqrt{2}}(t+2)=\frac{a\left(\frac{\sqrt{2}(v-u)}{4 a}\right)}{\sqrt{2}}\left(\frac{\sqrt{2}(v-u)}{4 a}+2\right)$;
$4 v(4 a)=\sqrt{2}(v-u)^{2}+8 a(v-u) ;$
$\sqrt{2}(v-u)^{2}=8 a(v+u) ;$
$(v-u)^{2}=4 a \sqrt{2}(u+v)$
In this case, $(v-u)^{2}=8(u+v)$,
which can be written as $(y-x)^{2}=8(x+y)$
[When $t=1$ (at P, say), we expect PS to be parallel to the directrix (where S is the focus), by comparison with $y^{2}=4 a x$.
When $t=1,\binom{u}{v}=\frac{1}{\sqrt{2}}\binom{a t^{2}-2 a t}{a t^{2}+2 a t}=\binom{-1}{3}$,
and the gradient of PS is $\frac{3-1}{-1-1}=-1$, which is the gradient of the directrix.

