Parabolas Q5 [Problem/H](30/5/21)

Find the cartesian equations of the parabolas with:

(i) focus (4,4) and directrix y = 0

(ii) focus (1,1) and directrix x + y + 2 = 0

Find the cartesian equations of the parabolas with:

(i) focus (4,4) and directrix y = 0

(ii) focus (1,1) and directrix x + y + 2 = 0

Solution

(i) The shortest distance from the focus to the directrix is 2a, so a = 2.

Starting from the parabola with focus (0,2) and directrix y = -2 (with eq'n $x^2 = 4ay = 8y$), we need to make a translation of $\binom{4}{2}$, so that the eq'n becomes $(x - 4)^2 = 8(y - 2) = 8y - 16$

(ii) The directrix is y = -x - 2 (see diagram), and so $a = \sqrt{2}$

For general *a*, the parabola is obtained by rotating $y^2 = 4ax$ through 45° anti-clockwise.

Let the point (x, y) be transformed to the point (u, v) under the rotation.

Then
$$\binom{u}{v} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \binom{x}{y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} at^2 \\ 2at \end{pmatrix}$$

 $= \frac{1}{\sqrt{2}} \begin{pmatrix} at^2 - 2at \\ at^2 + 2at \end{pmatrix}$
Then $v - u = \frac{4at}{\sqrt{2}}$, so that $v = \frac{at}{\sqrt{2}}(t+2) = \frac{a(\frac{\sqrt{2}(v-u)}{4a})}{\sqrt{2}} \begin{pmatrix} \sqrt{2}(v-u) \\ 4a \end{pmatrix} + 2 \end{pmatrix}$;
 $4v(4a) = \sqrt{2}(v-u)^2 + 8a(v-u)$;
 $\sqrt{2}(v-u)^2 = 8a(v+u)$;
 $(v-u)^2 = 4a\sqrt{2}(u+v)$
In this case, $(v-u)^2 = 8(u+v)$,
which can be written as $(y-x)^2 = 8(x+y)$

[When t = 1 (at P, say), we expect PS to be parallel to the directrix (where S is the focus), by comparison with $y^2 = 4ax$.

When
$$t = 1$$
, $\binom{u}{v} = \frac{1}{\sqrt{2}} \binom{at^2 - 2at}{at^2 + 2at} = \binom{-1}{3}$,

and the gradient of PS is $\frac{3-1}{-1-1} = -1$, which is the gradient of the directrix.