Parabolas Q4 [5 marks] (30/5/21)

Exam Boards

OCR:-
MEI:
AQA: -
Edx: Further Pure 1 (Year 1)

If the tangents to a parabola at P and Q are perpendicular, show that the chord PQ passes through the focus S of the parabola.
[The equation of the tangent can be used without proof.]

If the tangents to a parabola at P and Q are perpendicular, show that the chord PQ passes through the focus S of the parabola. [The equation of the tangent can be used without proof.]

Solution

The gradients of the two tangents are $\frac{1}{p}$ and $\frac{1}{q}$ (standard result).
[1 mark]
As the tangents are perpendicular, $\left(\frac{1}{p}\right)\left(\frac{1}{q}\right)=-1$, so that $p q=-1$.
[1 mark]
Gradient of PS $=\frac{2 a p-0}{a p^{2}-a}=\frac{2 p}{p^{2}-1}, \quad[1 \mathrm{mark}]$
and the gradient of
$\mathrm{QS}=\frac{2 a q-0}{a q^{2}-a}=\frac{2 q}{q^{2}-1}$
We wish to show that these gradients are the same; ie that
$\frac{2 p}{p^{2}-1}=\frac{2 q}{q^{2}-1}[1 \mathrm{mark}]$
LHS $=\frac{2\left(-\frac{1}{q}\right)}{\left(-\frac{1}{q}\right)^{2}-1}=\frac{2 q}{-1+q^{2}}=R H S \quad[1 \mathrm{mark}]$

