Parabolas Q3 [15 marks] (30/5/21)

Exam Boards

OCR:-
MEI:
AQA: -
Edx: Further Pure 1 (Year 1)

Suppose that $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$ are two points on the parabola $y^{2}=4 a x$, such that the chord $P Q$ passes through the focus of the parabola.
(i) Show that $p q=-1$. [7 marks]
(ii) Show that the tangents at P and Q meet on the directrix.
[The equations of the tangents can be quoted without proof.]
[3 marks]
(iii) Show that the locus of the midpoint of PQ is a parabola, and establish its focus and directrix. [5 marks]

Suppose that $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$ are two points on the parabola $y^{2}=4 a x$, such that the chord $P Q$ passes through the focus of the parabola.
(i) Show that $p q=-1$. [7 marks]
(ii) Show that the tangents at P and Q meet on the directrix.
[The equations of the tangents can be quoted without proof.] [3 marks]
(iii) Show that the locus of the midpoint of $P Q$ is a parabola, and establish its focus and directrix. [5 marks]

Solution

(i) If the focus is S , the gradient of PS equals the gradient of QS [1 mark]
ie $\frac{2 a p-0}{a p^{2}-a}=\frac{2 a q-0}{a q^{2}-a} \Rightarrow \frac{p}{p^{2}-1}=\frac{q}{q^{2}-1} \quad[1 \mathrm{mark}]$
Treating this as a quadratic in p (for example),
$q p^{2}+p\left(1-q^{2}\right)-q=0[1$ mark]
$\Rightarrow\left(p+\frac{1}{q}\right)\left(q p-q^{2}\right)=0$ [1 mark]
[as we trying to show that one root is $p=-\frac{1}{q}$]
$\Rightarrow p=-\frac{1}{q}$ or $q(p-q)=0$ [1 mark]
$q=0$ can be rejected, as PQ wouldn't pass through S , and $p \neq q$, otherwise $P Q$ is not a chord;
hence $p q=-1$, as required [2 marks]
(ii) The tangents have equations $p y-x=a p^{2}$
and $q y-x=a q^{2}$, and $p q=-1$, from (i).

The tangents meet the directrix when $x=-a$, so that for the tangent at $\mathrm{P}, p y+a=a p^{2}$ and hence $y=a p-\frac{a}{p}$, [1 mark] and for the tangent at $\mathrm{Q}, y=a q-\frac{a}{q}=a\left(-\frac{1}{p}\right)+a p=a p-\frac{a}{p}$ also. Thus the tangents meet on the directrix. [2 marks]
(iii) The midpoint of PQ is $\left(\frac{1}{2} a\left(p^{2}+q^{2}\right), \frac{1}{2} \cdot 2 a(p+q)\right)$ [1 mark]

Thus, for a point (x, y) on the locus of the midpoint, $x=\frac{1}{2} a\left(p^{2}+q^{2}\right)$ and $y=a(p+q)$
Then $y^{2}=a^{2}\left(p^{2}+q^{2}+2 p q\right)=2 a x-2 a^{2}=4\left(\frac{a}{2}\right)(x-a)$
[1 mark]
This can be obtained from $y^{2}=4\left(\frac{a}{2}\right) x$ by a translation of $\binom{a}{0}$, and so $y^{2}=4\left(\frac{a}{2}\right)(x-a)$ is a parabola with vertex $(a, 0)$ and focus $\left(\frac{a}{2}+a, 0\right)=\left(\frac{3 a}{2}, 0\right),[2$ marks]
and directrix $x=\frac{a}{2}$ [as the vertex is midway between the focus and the directrix] [1 mark]

