Parabolas Q2 [Problem/H] (29/5/21)

A ray (eg of light) travels on a path parallel to the x-axis and hits the surface of the parabola $y^{2}=4 a x$ at the point $\mathrm{P}\left(a t^{2}, 2 a t\right)$. The angle between the incoming ray and the normal at P is α. It can be assumed that the angle that the reflected ray makes with the normal is also α.

(i) Show that $\tan \alpha=t$
(ii) Find the gradient of the reflected ray.
(iii) Show that the reflected ray passes through the focus of the parabola.

A ray (eg of light) travels on a path parallel to the x-axis and hits the surface of the parabola $y^{2}=4 a x$ at the point $\mathrm{P}\left(a t^{2}, 2 a t\right)$. The angle between the incoming ray and the normal at P is α. It can be assumed that the angle that the reflected ray makes with the normal is also α.

(i) Show that $\tan \alpha=t$
(ii) Find the gradient of the reflected ray.
(iii) Show that the reflected ray passes through the focus of the parabola.

Solution

(i) The gradient of the tangent at P is $\frac{1}{t}$ (standard result), and hence the gradient of the normal is $-t$.

Hence, as the normal makes an angle $\pi-\alpha$ with the positive x-axis, $-t=\tan (\pi-\alpha)=-\tan \alpha$, so that $\tan \alpha=t$.
(ii) The gradient of the reflected ray is $\tan (\pi-2 \alpha)=-\tan (2 \alpha)$
$=\frac{-2 \tan \alpha}{1-\tan ^{2} \alpha}=\frac{2 t}{t^{2}-1}$
(iii) The equation of the reflected ray is $y-2 a t=\frac{2 t}{t^{2}-1}\left(x-a t^{2}\right)$.

When it meets the x-axis, $-2 a t=\frac{2 t}{t^{2}-1}\left(x-a t^{2}\right)$,
and $-a\left(t^{2}-1\right)=x-a t^{2}$,
so that $x=a$; ie the reflected ray passes through the focus.

