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Note: Unless stated otherwise, it is assumed that any numbers
referred to (such as a and b) are integers.

(A) Notation
(1) a|b : a divides b (a t b:a doesn't divide b)

(2) gcd(a, b): greatest common divisor (or highest common
factor) of a and b

(3) If a and b share no prime factors, then they are said to be
'relatively prime' or 'co-prime’ (and gcd(a,b) = 1)

(4) If we divide b into a and obtain a = gb + r, then:
a is the dividend
b is the divisor

q is the quotient



fmng.uk
r is the remainder

(5) 3: there exists

V: for all

(B) Divisibility tests

(1) A number is divisible by 3 if the sum of its digits is divisible by
3.

(2) A number is divisible by 4 if the number formed by its last two
digits is divisible by 4.

(3) A number is divisible by 9 if the sum of its digits is divisible by
9.

(4) The number with digits abcd ... z is divisible by 11 if

a—b+c—d+--—z isdivisible by 11

(5) Examples:

(a) 1358016 = 11 x 123456
and1—3+5-8+0—-1+6=0

(b) 9182736453 = 11 X 834794223

and 9—-1+8—-2+4+7-3+6—-4+5—-3=22

(C) Euclidean algorithm
(1.1) Division theorem (or 'algorithm')

This states that, if a & b are integers, with b # 0, then there is a
unique pair of integers q & r such that
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a=qb+r,where 0 <r < |b|

(1.2) Examples

a=24b=40= 24 =0(40) + 24
a=24,b=15=24=1(15)+9
a=24b=-15=24=(-1)(-15)+9
a=24,b=—-40 > 24 = 0(—40) + 24
a=-24b=40> -24 =(—-1)(40) + 16
a=—-24,b=15= -24=(-2)(15) +6
a=-24,b=-15=-24=(2)(—15)+ 6
a=—24,b = —40 = —-24 = (1)(—40) + 16

Note: Ifa = 232 & b = 11,then 232 = 21 X 11 + 1,
butif a = —-232&b =11,then —232 = —-22 x 11+ 10

(2) Theorem (A): If ¢ divides a & b, then ¢ divides au + bv, for all
integers u & v

(3) Lemma (B): If a = gb + r, then gcd(a,b) = gcd (b, 1)
Proof

By the theorem in (2), a common divisor of a & b is a divisor of
r = a — gqb, and is therefore a common divisor of b & .

Also, a common divisor of b & r is a divisorof a = gb + r, and is
therefore a common divisor of a & b.
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Thus, the common divisors of a & b are the same as the common

divisors of b & r, and hence gcd(a, b) = gcd(b, ).
Alternative Method: See STEP/Pure Exercises/Integers Q7

(4.1) Euclidean algorithm
This applies the lemma in (3) repeatedly.

Without loss of generality, we need only consider gcd(a, b), where
a & b are positive integers, and a > b

[If a (for example) is zero, then gcd(a, b) = b;
where either a or b is negative (or both are), then
ged(a, b) = ged (lal, [b]);

ifa = b, then gcd(a, b) = a]

(4.2) Example: Find gcd(90,84)

90 = 1(84) + 6

84 = 14(6)

So gcd(90,84 ) = gcd(84,6) = 6

[Note that this is quicker than writing 90 = 2 x 32 X 5

and 84 = 22 x 3 x 7, and selecting the lowest powers of the prime
factors: 2 X 3, and also quicker than comparing the multiples of
90 and 84.]

(5.1) Bezout's identity: If a and b are non-zero integers, then
there exist integers p & q such that gcd(a, b) = pa + gb
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The Euclidean algorithm can be used to find p & q.

(5.2) Example: Leta = 84 & b = 30

Then 84 = 2(30) + 24

30=1(24)+ 6

24 = 4(6)

so that gcd(84,30) =6

and, working backwards in the algorithm,
6 =30 —1(24)

=30 —1(84 — 2(30))

= 3(30) — 1(84)

ie 6 = 3(30) + (—1)(84)

(6) gcd(a, b) is the smallest positive integer that can be written as
a linear combination of a and b (Result C)

Proof
Suppose that D = pa + gb, where D < d = gcd (a, b)

Then d|a & d|b, so that d|D, which contradicts D < d.

(7) a and b are co-prime < 3 integers such thatax + by = 1
(Result D)

Proof
(i) Bezout's identity means that

a and b are co-prime = 3 integers such that ax + by = 1
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(ii) If ax + by = 1, then a and b are co-prime (if gcd(a, b) = d +
1, then d|1, which isn't possible, so there is a contradiction)

(D) Modular arithmetic
(1.1) Congruence

a is said to be congruent to b modulo m if a and b leave the same
remainder when they are divided by m (m is usually positive)

This is written a = b (mod m)
(sometimes referred to as modular congruence)

[m is referred to as the modulus]

(1.2) Examples
9 =2 (mod 7)
9 =16 (mod 7)

(2) a = b (mod m) if m|(a — b) (Result E)

The least residue of a (mod m) is the value b such thata = b
(mod m), and 0 < b < m. The least residue of a is just the
remainder when a is divided by m.

(3) Properties of congruences
(i) a = 0 (mod m) © m|a

(ii) a = a (mod m)
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(iii) If a = b (mod m), then b = a (mod m)

(iv) If a = b (mod m), and b = ¢ (mod m), then a = ¢ (mod m)

(4.1) Rules of modular arithmetic

Suppose that a = b (mod m) and ¢ = d (mod m), and m,n > 0.
(i) ka = kb (mod m)

(il)a+c=b+d(modm) and a —c = b — d (mod m)

(iii) ac = bd (mod m)

Proof

rtp (result to prove): m|(ac — bd)
a=b(modm)=a—b=pm

andc=d (modm) =>c—d=qm

So ac — bd = ac — (a — pm)(c — qm) = m(pc + qa — pgm)

(iv) a™ = b™ (mod m) (this follows from (iii))

(4.2) Example: Find the remainder when 263° is divided by 9
Solution

263 =270—7=-7 =2 (mod9)

Hence 263° = 2° =32 =5 (mod9)

(4.3) Example: Find the last digit of 523%*2

Solution
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523 = 3 (mod 10); hence 523%2 = 342 = (32)%!

Then, as 32 = —1 (mod 10), (3%)?1 = (-1)?! = —1.

So 523%? = —1 = 9 (mod 10), and this is the last digit

(4.4) Example: Find the remainder when 16%*! is divided by 7
Solution

16 = 2 (mod 7), and so 16241 = 2241 = 23x80+1 — 2(23)80
and 23 = 1, so that (23)80 = 180 =1,

and then 2(23)8° = 2

(E) Congruence equations

(1) The following is a standard result (Result F):
Consider the equation ax = b (mod m) (*)
witha,bm € Zand m > 0

Suppose that gcd(a, m) = d.

(i) If d t b, then (*) has no solutions.

(ii) If d|b, then (*) has d solutions (mod m)

Proof of (i): Suppose that (*) has a solution, so that
ax —b = kmforsome x &k
Then b = ax — km

As d|a and d|m, it follows that d|b, which contradicts the
assumption that d { b.
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To explore (ii), consider the following example.

Example: To find solutions of 12x = 18 (mod 30)

Here gcd(12,30) = 6 and 6|18, so (from the result above) we
expect there to be 6 solutions (mod 30).

First of all, we can establish that there will be at least one
solution:

We want to find x & k such that 12x — 18 = 30k
Dividing through by gcd(12,30) = 6, this gives
2x —3 =5k,and gcd(2,5) =1

We can now use the earlier result that, if p and q are co-prime,
then 3 integers such that pX + qY = 1.

In this case, we can find X & Y such that 2X + 5Y = 1.

Then our equation 2x — 3 = 5k can be rewritten as 2x — 5k = 3,
and 2X + 5Y = 1 can be rewritten as 2(3X) — 5(—3Y) = 3,
giving x = 3X and k = —3Y, and so at least one solution exists.
We can now see how there will be d solutions (mod m):
Suppose that we have found x & k such that 12x — 18 = 30k
Then consider another solution x’ = x + A, so that

12(x + ) — 18 = 30k’

As 12x — 18 = 30k, this means that 124 = 0 (mod 30).

This holds for the integer A = ? = 5,as 12 (3—60) = (%)(30), but

no smaller integer, as 6 is the largest number that is a divisor of
both 30 and 12 (making both 3—60 and % integers).
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It also holds for multiples of 5, from 0 up to 6 — 1, with

subsequent multiples repeating the cycle (as 6(?) = 0(3—60) (mod
30 30 30
30),7(3) =30+ () =1(2) eto).

Thus there are 6 solutions (mod 30), and d (mod m) in the
general case.

(2.1) Multiplicative inverses

A multiplicative inverse of a (mod m) is defined to be the
integer p that satisfies ap = 1 (mod m), where we can assume
that gcd(a, m) = 1.

[Suppose that gcd(a,m) = d. Then ap = 1 (mod m)=
ap—1=Am = ap —Am = 1,and as d|a & d|m, it follows that
d|1, which means thatd = 1,as d > 0.]

By Bezout's identity, as gcd(a, m) = 1, there exist integers p & q
such that ap + mgq = 1, and then ap = 1 (mod m).

As already seen, the Euclidean algorithm can be used to find
P&q.

(2.2) Example: Find a positive multiplicative inverse of 5 (mod 6).
We have to find an integer p that satisfies 5p = 1 (mod 6).

To do this we find p & g such that 5p 4+ 6q = 1:

Applying the Euclidean algorithm,

6=1(5)+1

5=501)

sothat1 =6 —1(5);ie5(-1)+6(1) =1

10
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andsop = —1

Thus 5(—1) = 1 (mod 6), and hence 5(—1) + 5(6) = 1 (mod 6),

so that 5(5) = 1 (mod 6); ie the required multiplicative inverse is
5.

(3) To solve the congruence equation ax = b (mod m) (assuming
that gcd(a, m) |b), multiply both sides by the multiplicative
inverse p of a (mod m), to give apx = bp (mod m)

Thenap =1 = apx = x, so that x = bp. (Result G)

(4.1) Cancelling in modular arithmetic
If ka = kb (mod m) and gcd(k,m) = d,
then a = b (mod %) (Result H)

Proof: ka = kb (mod m)= m|k(a — b)

Then, as gcd(k, m) = d, the prime factors of m that make up d
will divide k, but will not necessarily divide (a — b). However, the
remaining prime factors of m must divide (a — b), as they don't

divide k, and so it follows that — |(a — b); ie a = b (mod =)
d d

(4.2) Example: Solve the congruence equation 3x = 12 (mod 6)
As gcd(3,6) = 3, we can write x = 4 (mod 2), so that

x = 0 (mod 2).

(4.3) Example: Solve the congruence equation 18x = 12 (mod 40)

11
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As gcd(6,40) = 2, we can write 3x = 2 (mod 42—0);

ie 3x = 2 (mod 20).

Note that gcd(a, m) = 1 (writing the congruence equation in the
form ax = b (mod m)). Had this not been the case, there would

only have been a solution if gcd(a, m)|b, and then it would have

been possible to cancel the equation further, as gcd(a, m) would
divide a, b & m.

We can now find the multiplicative inverse of 3; ie the p that
satisfies 3p = 1 (mod 20).

Using Bezout's identity, we find p & g such that 3p + 20q = 1.
Applying the Euclidean algorithm,

20 = 6(3) + 2
3=1(2)+1
2 =2(1)

sothat 1 =3—1(2) =3 —1(20 - 6(3)) = 3(7) + 20(-1)
andsop =7
Thus 3(7) = 1 (mod 20).

Then, to tackle 3x = 2 (mod 20), we multiply both sides by the
multiplicative inverse, to give 7(3x) = 14 (mod 20), and then by
the earlier result this gives x = 14 (mod 20).

As gcd(3,20) = 1, this is the only solution, by result (F).

(F) Fermat's Little theorem

(1) This states that, if p is a prime number and a is any integer,
then a? = a (mod p).

12
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(2) If p isn't a factor of a (so that gcd(a,p) = 1), a can be
cancelled from both sides, with no effect on the modulus, to give:

aP~! =1 (mod p). [ResultI]

(3) It follows that a?~2.a = 1 (mod p), so that (when p isn'ta
factor of a) aP~2 is a multiplicative inverse of a (mod p).

[Result ]]

(4) Example: Find the remainder when 2493 is divided by 13.
Solution: By Fermat's Little theorem, 212 = 1 (mod 13).
Noting that 403 = 33 X 12 + 7,

(212)33 = 133 = 1

= 2403 = 27(212)33 =27 =128=130—-2= -2 = 11 (mod 13)

(5) If ax = b (mod p), where p is prime, and if p isn't a factor of a,
then, by Result F, there is one solution for x.

Then a?~x = aP~2b (mod p),

and as aP?~! = 1, it follows that a?~1x = x,

so that x = a?~2b (mod p) [Result K]

(6) Example: Solve 5x = 8 (mod 17)

Solution

13
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By Results ] and K, 5'° is a multiplicative inverse of 5 (mod 17)

and x = 5'° x 8 (mod 17)

Now, 52 = 25 = 8 (mod 17),

sothat 5* =82 =64 =68—4=—4 = 13 (mod 17),

and then

56 =5%*%x52=13%x8=104=6X17 + 2 = 2 (mod 17),

so that 512 = 22 = 4 (mod 17),

and 51°x8 =52 x52x(5x8)=4x8x6=192(mod 17),
and hence x =5 x8=192=170+17 + 5= 5 (mod 17).

(7) Example: Find the remainder when 121999 js divided by 7.
Solution

By Fermat's Little theorem, 12° = 1 (mod 7), as 12 is not divisible
by 7.

Then, as 1000 = (6 X 166) + 4,
12996 = (126)166 = 1166 = 1 (mod 7).

Also, 122 = 144 = 4 (mod 7)

and so 12* = 42 = 16 = 2 (mod 7).

Hence 121000 = 12996 x 12% =1 x 2 = 2 (mod 7).

Appendix 1: Summary of results (see also Appendix 2)

(1) Division theorem (or 'algorithm):
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If a & b are integers, with b # 0, then there is a unique pair of

integers q & r such that a = gb + r, where 0 < r < |b|

(2) (Theorem A) If ¢ divides a & b, then c divides au + bv, for all
integers u & v

(3) (Lemma B) If a = gb + r, then gcd(a,b) = gcd (b, 1)

(4) Euclidean algorithm: The application of the lemma in (3) to
produce gcd(a, b).

(5) Bezout's identity: If a and b are non-zero integers, then there
exist integers p & g such that gcd(a, b) = pa + gb

(The Euclidean algorithm can be used to find p & q.)

(6) (Result C) gcd(a, b) is the smallest positive integer that can be
written as a linear combination of a and b

(7) (Result D) a and b are co-prime < 3 integers such that ax +
by =1

(8) (Result E) a = b (mod m) if m|(a — b)

(9) (Result F) Consider the equation ax = b (modm) (*)

witha,bbm e Zandm > 0

15
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Suppose that gcd(a, m) = d.
(i) If d t b, then (*) has no solutions.

(ii) If d|b, then (*) has d solutions (mod m)

(10) (Result K) If ax = b (mod p), where p is prime, and if p isn't
a factor of a, then x = aP~?b (mod p)

Appendix 2: Summary of congruence devices
(1) eg 72 =49 = 1 (mod 12),s0 7°¢ = (72)*® = 148 = 1 (mod 12)
(using a power of 7 that is congruent to 1)

Congruence to —1 can also be useful.

(2) Problems involving the last digit of a number can usually be
tackled by considering congruence mod 10.

Using the device in (1), where we look for congruence to 1 or
—1 (mod 10), note the following:

32 =9 = —1 (mod 10), so 3*" = (—1)?" = 1 (mod 10)
7?2 = 49 = —1 (mod 10), so 74" = (=1)?" = 1 (mod 10)
11 =1 (mod 10),s0 11" = 1 (mod 10)

[Note that powers of even numbers will never be congruent to 1
or —1 (mod 10).]

(3)Ifa = b (mod m) and ¢ = d (mod m), and m,n > 0.
(i) ka = kb (mod m)

16
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(ila+c=b+d(modm) and a —c = b — d (mod m)

(iii) ac = bd (mod m)
Special case: If b = ¢ (mod m), then ab = ac (mod m)

(iv) a™ = b™ (mod m) (this follows from (iii))

(4) A multiplicative inverse p of a (mod m) [so that ap = 1 (mod
m), where we can assume that gcd(a, m) = 1] can be found by
applying the Euclidean algorithm to find p & q such that ap +
mq = 1.

(5) (Result G) To solve the congruence equation ax = b (mod m)
(assuming that gcd(a, m) |b), multiply both sides by the
multiplicative inverse p of a (mod m), to give apx = bp (mod m)

Thenap =1 = apx = x, so that x = bp.

(6) (Result H) If ka = kb (mod m) and gcd(k,m) = d,

then a = b (mod E)
d

(7) Fermat's Little theorem: If p is a prime number and a is any
integer, then a? = a (mod p).

(8) If p isn't a factor of a, a?~! = 1 (mod p) [Result I].

(9) When p isn't a factor of a, aP~? is a multiplicative inverse of a

17
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[Result]].
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