Contents

(A) Notation
(B) Divisibility tests
(C) Euclidean algorithm
(D) Modular arithmetic
(E) Congruence equations
(F) Fermat's Little theorem

Appendix 1: Summary of results
Appendix 2: Summary of congruence devices

Note: Unless stated otherwise, it is assumed that any numbers referred to (such as a and b) are integers.

(A) Notation

(1) $a \mid b: a$ divides b ($a \nmid b: a$ doesn't divide b)
(2) $\operatorname{gcd}(a, b)$: greatest common divisor (or highest common factor) of a and b
(3) If a and b share no prime factors, then they are said to be 'relatively prime' or 'co-prime' (and $\operatorname{gcd}(a, b)=1)$
(4) If we divide b into a and obtain $a=q b+r$, then:
a is the dividend
b is the divisor
q is the quotient
r is the remainder
(5) \exists : there exists
\forall : for all

(B) Divisibility tests

(1) A number is divisible by 3 if the sum of its digits is divisible by 3.
(2) A number is divisible by 4 if the number formed by its last two digits is divisible by 4.
(3) A number is divisible by 9 if the sum of its digits is divisible by 9.
(4) The number with digits $a b c d \ldots z$ is divisible by 11 if $a-b+c-d+\cdots-z$ is divisible by 11
(5) Examples:
(a) $1358016=11 \times 123456$
and $1-3+5-8+0-1+6=0$
(b) $9182736453=11 \times 834794223$
and $9-1+8-2+7-3+6-4+5-3=22$

(C) Euclidean algorithm

(1.1) Division theorem (or 'algorithm')

This states that, if $a \& b$ are integers, with $b \neq 0$, then there is a unique pair of integers $q \& r$ such that
$a=q b+r$, where $0 \leq r<|b|$
(1.2) Examples
$a=24, b=40 \Rightarrow 24=0(40)+24$
$a=24, b=15 \Rightarrow 24=1(15)+9$
$a=24, b=-15 \Rightarrow 24=(-1)(-15)+9$
$a=24, b=-40 \Rightarrow 24=0(-40)+24$
$a=-24, b=40 \Rightarrow-24=(-1)(40)+16$
$a=-24, b=15 \Rightarrow-24=(-2)(15)+6$
$a=-24, b=-15 \Rightarrow-24=(2)(-15)+6$
$a=-24, b=-40 \Rightarrow-24=(1)(-40)+16$

Note: If $a=232 \& b=11$, then $232=21 \times 11+1$, but if $a=-232 \& b=11$, then $-232=-22 \times 11+10$
(2) Theorem (A): If c divides $a \& b$, then c divides $a u+b v$, for all integers $u \& v$
(3) Lemma (B): If $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$

Proof

By the theorem in (2), a common divisor of $a \& b$ is a divisor of $r=a-q b$, and is therefore a common divisor of $b \& r$.

Also, a common divisor of $b \& r$ is a divisor of $a=q b+r$, and is therefore a common divisor of $a \& b$.

Thus, the common divisors of $a \& b$ are the same as the common divisors of $b \& r$, and hence $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Alternative Method: See STEP/Pure Exercises/Integers Q7

(4.1) Euclidean algorithm

This applies the lemma in (3) repeatedly.
Without loss of generality, we need only consider $\operatorname{gcd}(a, b)$, where $a \& b$ are positive integers, and $a>b$
[If a (for example) is zero, then $\operatorname{gcd}(a, b)=b$;
where either a or b is negative (or both are), then
$\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|) ;$
if $a=b$, then $\operatorname{gcd}(a, b)=a]$
(4.2) Example: Find $\operatorname{gcd}(90,84)$
$90=1(84)+6$
$84=14(6)$
So $\operatorname{gcd}(90,84)=\operatorname{gcd}(84,6)=6$
[Note that this is quicker than writing $90=2 \times 3^{2} \times 5$
and $84=2^{2} \times 3 \times 7$, and selecting the lowest powers of the prime factors: 2×3, and also quicker than comparing the multiples of 90 and 84.]
(5.1) Bezout's identity: If a and b are non-zero integers, then there exist integers $p \& q$ such that $\operatorname{gcd}(a, b)=p a+q b$

The Euclidean algorithm can be used to find $p \& q$.
(5.2) Example: Let $a=84 \& b=30$

Then $84=2(30)+24$
$30=1(24)+6$
$24=4(6)$
so that $\operatorname{gcd}(84,30)=6$
and, working backwards in the algorithm,
$6=30-1(24)$
$=30-1(84-2(30))$
$=3(30)-1(84)$
ie $6=3(30)+(-1)(84)$
(6) $\operatorname{gcd}(a, b)$ is the smallest positive integer that can be written as a linear combination of a and b (Result C)

Proof

Suppose that $D=p a+q b$, where $D<d=\operatorname{gcd}(a, b)$
Then $d|a \& d| b$, so that $d \mid D$, which contradicts $D<d$.
(7) a and b are co-prime $\Leftrightarrow \exists$ integers such that $a x+b y=1$
(Result D)

Proof

(i) Bezout's identity means that
a and b are co-prime $\Rightarrow \exists$ integers such that $a x+b y=1$
(ii) If $a x+b y=1$, then a and b are co-prime (if $\operatorname{gcd}(a, b)=d \neq$ 1 , then $d \mid 1$, which isn't possible, so there is a contradiction)

(D) Modular arithmetic

(1.1) Congruence
a is said to be congruent to b modulo m if a and b leave the same remainder when they are divided by m (m is usually positive)

This is written $a \equiv b(\bmod m)$
(sometimes referred to as modular congruence)
[m is referred to as the modulus]
(1.2) Examples
$9 \equiv 2(\bmod 7)$
$9 \equiv 16(\bmod 7)$
(2) $a \equiv b(\bmod m)$ if $m \mid(a-b)($ Result E)

The least residue of $a(\bmod m)$ is the value b such that $a \equiv b$ $(\bmod m)$, and $0 \leq b<m$. The least residue of a is just the remainder when a is divided by m.
(3) Properties of congruences
(i) $a \equiv 0(\bmod m) \Leftrightarrow m \mid a$
(ii) $a \equiv a(\bmod m)$
(iii) If $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$
(iv) If $a \equiv b(\bmod m)$, and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$
(4.1) Rules of modular arithmetic

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, and $m, n>0$.
(i) $k a \equiv k b(\bmod m)$
(ii) $a+c \equiv b+d(\bmod m)$ and $a-c \equiv b-d(\bmod m)$
(iii) $a c \equiv b d(\bmod m)$

Proof

rtp (result to prove): $m \mid(a c-b d)$
$a \equiv b(\bmod m) \Rightarrow a-b=p m$
and $c \equiv d(\bmod m) \Rightarrow c-d=q m$
So $a c-b d=a c-(a-p m)(c-q m)=m(p c+q a-p q m)$
(iv) $a^{n} \equiv b^{n}(\bmod m)$ (this follows from (iii))
(4.2) Example: Find the remainder when 263^{5} is divided by 9

Solution

$263=270-7 \equiv-7 \equiv 2(\bmod 9)$
Hence $263^{5} \equiv 2^{5}=32 \equiv 5(\bmod 9)$
(4.3) Example: Find the last digit of 523^{42}

Solution

$523 \equiv 3(\bmod 10) ;$ hence $523^{42} \equiv 3^{42}=\left(3^{2}\right)^{21}$
Then, as $3^{2} \equiv-1(\bmod 10),\left(3^{2}\right)^{21} \equiv(-1)^{21}=-1$.
So $523^{42} \equiv-1 \equiv 9(\bmod 10)$, and this is the last digit
(4.4) Example: Find the remainder when 16^{241} is divided by 7

Solution

$16 \equiv 2(\bmod 7)$, and so $16^{241} \equiv 2^{241}=2^{3 \times 80+1}=2\left(2^{3}\right)^{80}$ and $2^{3} \equiv 1$, so that $\left(2^{3}\right)^{80} \equiv 1^{80}=1$, and then $2\left(2^{3}\right)^{80} \equiv 2$

(E) Congruence equations

(1) The following is a standard result (Result F):

Consider the equation $\left.a x \equiv b(\bmod m) \quad \quad^{*}\right)$
with $a, b, m \in \mathbb{Z}$ and $m>0$
Suppose that $\operatorname{gcd}(a, m)=d$.
(i) If $d \nmid b$, then $(*)$ has no solutions.
(ii) If $d \mid b$, then $\left(^{*}\right)$ has d solutions $(\bmod m)$

Proof of (i): Suppose that (*) has a solution, so that $a x-b=k m$ for some $x \& k$

Then $b=a x-k m$
As $d \mid a$ and $d \mid m$, it follows that $d \mid b$, which contradicts the assumption that $d \nmid b$.

To explore (ii), consider the following example.
Example: To find solutions of $12 x \equiv 18(\bmod 30)$
Here $\operatorname{gcd}(12,30)=6$ and $6 \mid 18$, so (from the result above) we expect there to be 6 solutions $(\bmod 30)$.

First of all, we can establish that there will be at least one solution:

We want to find $x \& k$ such that $12 x-18=30 k$
Dividing through by $\operatorname{gcd}(12,30)=6$, this gives
$2 x-3=5 k$, and $\operatorname{gcd}(2,5)=1$
We can now use the earlier result that, if p and q are co-prime, then \exists integers such that $p X+q Y=1$.

In this case, we can find $X \& Y$ such that $2 X+5 Y=1$.
Then our equation $2 x-3=5 k$ can be rewritten as $2 x-5 k=3$, and $2 X+5 Y=1$ can be rewritten as $2(3 X)-5(-3 Y)=3$, giving $x=3 X$ and $k=-3 Y$, and so at least one solution exists.

We can now see how there will be d solutions $(\bmod m)$:

Suppose that we have found $x \& k$ such that $12 x-18=30 k$
Then consider another solution $x^{\prime}=x+\lambda$, so that
$12(x+\lambda)-18=30 k^{\prime}$
As $12 x-18=30 k$, this means that $12 \lambda \equiv 0(\bmod 30)$.
This holds for the integer $\lambda=\frac{30}{6}=5$, as $12\left(\frac{30}{6}\right)=\left(\frac{12}{6}\right)(30)$, but no smaller integer, as 6 is the largest number that is a divisor of both 30 and 12 (making both $\frac{30}{6}$ and $\frac{12}{6}$ integers).

It also holds for multiples of 5 , from 0 up to $6-1$, with subsequent multiples repeating the cycle (as $6\left(\frac{30}{6}\right) \equiv 0\left(\frac{30}{6}\right)(\bmod$ $30), 7\left(\frac{30}{6}\right)=30+\left(\frac{30}{6}\right) \equiv 1\left(\frac{30}{6}\right)$ etc .

Thus there are 6 solutions $(\bmod 30)$, and $d(\bmod m)$ in the general case.
(2.1) Multiplicative inverses

A multiplicative inverse of $a(\bmod m)$ is defined to be the integer p that satisfies $a p \equiv 1(\bmod m)$, where we can assume that $\operatorname{gcd}(a, m)=1$.
$[$ Suppose that $\operatorname{gcd}(a, m)=d$. Then $a p \equiv 1(\bmod m) \Rightarrow$ $a p-1=\lambda m \Rightarrow a p-\lambda m=1$, and as $d|a \& d| m$, it follows that $d \mid 1$, which means that $d=1$, as $d>0$.]

By Bezout's identity, as $\operatorname{gcd}(a, m)=1$, there exist integers $p \& q$ such that $a p+m q=1$, and then $a p \equiv 1(\bmod m)$.

As already seen, the Euclidean algorithm can be used to find $p \& q$.
(2.2) Example: Find a positive multiplicative inverse of $5(\bmod 6)$.

We have to find an integer p that satisfies $5 p \equiv 1(\bmod 6)$.
To do this we find $p \& q$ such that $5 p+6 q=1$:
Applying the Euclidean algorithm,
$6=1(5)+1$
$5=5(1)$
so that $1=6-1(5)$; ie $5(-1)+6(1)=1$
and so $p=-1$
Thus $5(-1) \equiv 1(\bmod 6)$, and hence $5(-1)+5(6) \equiv 1(\bmod 6)$, so that $5(5) \equiv 1(\bmod 6)$; ie the required multiplicative inverse is 5.
(3) To solve the congruence equation $a x \equiv b(\bmod m)$ (assuming that $\operatorname{gcd}(a, m) \mid b)$, multiply both sides by the multiplicative inverse p of $a(\bmod m)$, to give $a p x \equiv b p(\bmod m)$

Then $a p \equiv 1 \Rightarrow a p x \equiv x$, so that $x \equiv b p$. (Result G)

(4.1) Cancelling in modular arithmetic

If $k a \equiv k b(\bmod m)$ and $\operatorname{gcd}(k, m)=d$, then $a \equiv b\left(\bmod \frac{m}{d}\right) \quad($ Result H)

Proof: $k a \equiv k b(\bmod m) \Rightarrow m \mid k(a-b)$
Then, as $\operatorname{gcd}(k, m)=d$, the prime factors of m that make up d will divide k, but will not necessarily divide $(a-b)$. However, the remaining prime factors of m must divide $(a-b)$, as they don't divide k, and so it follows that $\left.\frac{m}{d} \right\rvert\,(a-b)$; ie $a \equiv b\left(\bmod \frac{m}{d}\right)$
(4.2) Example: Solve the congruence equation $3 x \equiv 12(\bmod 6)$

As $\operatorname{gcd}(3,6)=3$, we can write $x \equiv 4(\bmod 2)$, so that $x \equiv 0(\bmod 2)$.
(4.3) Example: Solve the congruence equation $18 x \equiv 12(\bmod 40)$

As $\operatorname{gcd}(6,40)=2$, we can write $3 x \equiv 2\left(\bmod \frac{40}{2}\right)$;
ie $3 x \equiv 2(\bmod 20)$.
Note that $\operatorname{gcd}(a, m)=1$ (writing the congruence equation in the form $a x \equiv b(\bmod m))$. Had this not been the case, there would only have been a solution if $\operatorname{gcd}(a, m) \mid b$, and then it would have been possible to cancel the equation further, as $\operatorname{gcd}(a, m)$ would divide a, b \& m.

We can now find the multiplicative inverse of 3 ; ie the p that satisfies $3 p \equiv 1(\bmod 20)$.

Using Bezout's identity, we find $p \& q$ such that $3 p+20 q=1$.
Applying the Euclidean algorithm,
$20=6(3)+2$
$3=1(2)+1$
$2=2(1)$
so that $1=3-1(2)=3-1(20-6(3))=3(7)+20(-1)$
and so $p=7$
Thus $3(7) \equiv 1(\bmod 20)$.
Then, to tackle $3 x \equiv 2(\bmod 20)$, we multiply both sides by the multiplicative inverse, to give $7(3 x) \equiv 14(\bmod 20)$, and then by the earlier result this gives $x \equiv 14(\bmod 20)$.

As $\operatorname{gcd}(3,20)=1$, this is the only solution, by result (F).

(F) Fermat's Little theorem

(1) This states that, if p is a prime number and a is any integer, then $a^{p} \equiv a(\bmod p)$.
(2) If p isn't a factor of a (so that $\operatorname{gcd}(a, p)=1$), a can be cancelled from both sides, with no effect on the modulus, to give:
$a^{p-1} \equiv 1(\bmod p) .[$ Result I]
(3) It follows that $a^{p-2} \cdot a \equiv 1(\bmod p)$, so that (when p isn't a factor of $a) a^{p-2}$ is a multiplicative inverse of $a(\bmod p)$.
[Result J]
(4) Example: Find the remainder when 2^{403} is divided by 13.

Solution: By Fermat's Little theorem, $2^{12} \equiv 1(\bmod 13)$.
Noting that $403=33 \times 12+7$,
$\left(2^{12}\right)^{33} \equiv 1^{33}=1$
$\Rightarrow 2^{403}=2^{7}\left(2^{12}\right)^{33} \equiv 2^{7}=128=130-2 \equiv-2 \equiv 11(\bmod 13)$
(5) If $a x \equiv b(\bmod p)$, where p is prime, and if p isn't a factor of a, then, by Result F , there is one solution for x.

Then $a^{p-1} x \equiv a^{p-2} b(\bmod p)$,
and as $a^{p-1} \equiv 1$, it follows that $a^{p-1} x \equiv x$,
so that $x \equiv a^{p-2} b(\bmod p)[$ Result K]
(6) Example: Solve $5 x \equiv 8(\bmod 17)$

Solution

By Results J and K, 5^{15} is a multiplicative inverse of $5(\bmod 17)$ and $x \equiv 5^{15} \times 8(\bmod 17)$

Now, $5^{2}=25 \equiv 8(\bmod 17)$,
so that $5^{4} \equiv 8^{2}=64=68-4 \equiv-4 \equiv 13(\bmod 17)$,
and then
$5^{6}=5^{4} \times 5^{2} \equiv 13 \times 8=104=6 \times 17+2 \equiv 2(\bmod 17)$,
so that $5^{12} \equiv 2^{2}=4(\bmod 17)$,
and $5^{15} \times 8=5^{12} \times 5^{2} \times(5 \times 8) \equiv 4 \times 8 \times 6=192(\bmod 17)$,
and hence $x \equiv 5^{15} \times 8 \equiv 192=170+17+5 \equiv 5(\bmod 17)$.
(7) Example: Find the remainder when 12^{1000} is divided by 7 .

Solution

By Fermat's Little theorem, $12^{6} \equiv 1(\bmod 7)$, as 12 is not divisible by 7 .

Then, as $1000=(6 \times 166)+4$,
$12^{996}=\left(12^{6}\right)^{166} \equiv 1^{166}=1(\bmod 7)$.
Also, $12^{2}=144 \equiv 4(\bmod 7)$
and so $12^{4} \equiv 4^{2}=16 \equiv 2(\bmod 7)$.
Hence $12^{1000}=12^{996} \times 12^{4} \equiv 1 \times 2=2(\bmod 7)$.

Appendix 1: Summary of results (see also Appendix 2)
(1) Division theorem (or 'algorithm'):

If $a \& b$ are integers, with $b \neq 0$, then there is a unique pair of integers $q \& r$ such that $a=q b+r$, where $0 \leq r<|b|$
(2) (Theorem A) If c divides $a \& b$, then c divides $a u+b v$, for all integers $u \& v$
(3) (Lemma B) If $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$
(4) Euclidean algorithm: The application of the lemma in (3) to produce $\operatorname{gcd}(a, b)$.
(5) Bezout's identity: If a and b are non-zero integers, then there exist integers $p \& q$ such that $\operatorname{gcd}(a, b)=p a+q b$
(The Euclidean algorithm can be used to find $p \& q$.)
(6) (Result C) $\operatorname{gcd}(a, b)$ is the smallest positive integer that can be written as a linear combination of a and b
(7) (Result D) a and b are co-prime $\Leftrightarrow \exists$ integers such that $a x+$ $b y=1$
(8) (Result E) $a \equiv b(\bmod m)$ if $m \mid(a-b)$
(9) (Result F) Consider the equation $a x \equiv b(\bmod m)$ with $a, b, m \in \mathbb{Z}$ and $m>0$

Suppose that $\operatorname{gcd}(a, m)=d$.
(i) If $d \nmid b$, then (*) has no solutions.
(ii) If $d \mid b$, then $\left({ }^{*}\right)$ has d solutions $(\bmod m)$
(10) (Result K) If $a x \equiv b(\bmod p)$, where p is prime, and if p isn't a factor of a, then $x \equiv a^{p-2} b(\bmod p)$

Appendix 2: Summary of congruence devices

(1) eg $7^{2}=49 \equiv 1(\bmod 12)$, so $7^{96}=\left(7^{2}\right)^{48} \equiv 1^{48}=1(\bmod 12)$ (using a power of 7 that is congruent to 1)

Congruence to -1 can also be useful.
(2) Problems involving the last digit of a number can usually be tackled by considering congruence mod 10.

Using the device in (1), where we look for congruence to 1 or $-1(\bmod 10)$, note the following:
$3^{2}=9 \equiv-1(\bmod 10)$, so $3^{4 n} \equiv(-1)^{2 n}=1(\bmod 10)$
$7^{2}=49 \equiv-1(\bmod 10)$, so $7^{4 n} \equiv(-1)^{2 n}=1(\bmod 10)$
$11 \equiv 1(\bmod 10)$, so $11^{n} \equiv 1(\bmod 10)$
[Note that powers of even numbers will never be congruent to 1 or $-1(\bmod 10)$.
(3) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, and $m, n>0$.
(i) $k a \equiv k b(\bmod m)$
(ii) $a+c \equiv b+d(\bmod m)$ and $a-c \equiv b-d(\bmod m)$
(iii) $a c \equiv b d(\bmod m)$

Special case: If $b \equiv c(\bmod m)$, then $a b \equiv a c(\bmod m)$
(iv) $a^{n} \equiv b^{n}(\bmod m)$ (this follows from (iii))
(4) A multiplicative inverse p of $a(\bmod m)$ [so that $a p \equiv 1(\bmod$ m), where we can assume that $\operatorname{gcd}(a, m)=1]$ can be found by applying the Euclidean algorithm to find $p \& q$ such that $a p+$ $m q=1$.
(5) (Result G) To solve the congruence equation $a x \equiv b(\bmod m)$ (assuming that $\operatorname{gcd}(a, m) \mid b)$, multiply both sides by the multiplicative inverse p of $a(\bmod m)$, to give $a p x \equiv b p(\bmod m)$ Then $a p \equiv 1 \Rightarrow a p x \equiv x$, so that $x \equiv b p$.
(6) (Result H) If $k a \equiv k b(\bmod m)$ and $\operatorname{gcd}(k, m)=d$, then $a \equiv b\left(\bmod \frac{m}{d}\right)$
(7) Fermat's Little theorem: If p is a prime number and a is any integer, then $a^{p} \equiv a(\bmod p)$.
(8) If p isn't a factor of $a, a^{p-1} \equiv 1(\bmod p)[$ Result I].
(9) When p isn't a factor of a, a^{p-2} is a multiplicative inverse of a
[Result J].

