Numerical Methods – Q5: Integration [Practice/E] (12/6/21)

Use the following Trapezium Rule estimates to obtain extrapolated values for T_{16} and T_{∞} .

n	T_n	
1	0.785398	
2	1.053137	
4	1.146955	
8	1.180051	

Solution

n	T_n	$T_n - T_{\frac{n}{2}}$	Ratios
1	0.785398		
2	1.053137	0.267739	
4	1.146955	0.093818	0.350408
8	1.180051	0.033096	0.352768

[The values of *k* that are actually realised for the integration methods are often significantly different from the theoretical ones, and can be higher or lower.]

 $T_{16} \approx T_8 + 0.35(T_8 - T_4) = 1.191635$ $T_{\infty} \approx T_8 + \frac{0.35}{1 - 0.35}(T_8 - T_4) = 1.197872$ Estimate for *T*: 1.20 (2dp) looks secure.