Numerical Methods - Q5: Integration [Practice/E] (12/6/21)

Use the following Trapezium Rule estimates to obtain extrapolated values for T_{16} and T_{∞}.

n	T_{n}
1	0.785398
2	1.053137
4	1.146955
8	1.180051

Solution

n	T_{n}	$T_{n}-T_{\frac{n}{2}}$	Ratios
1	0.785398		
2	1.053137	0.267739	
4	1.146955	0.093818	0.350408
8	1.180051	0.033096	0.352768

[The values of k that are actually realised for the integration methods are often significantly different from the theoretical ones, and can be higher or lower.]
$T_{16} \approx T_{8}+0.35\left(T_{8}-T_{4}\right)=1.191635$
$T_{\infty} \approx T_{8}+\frac{0.35}{1-0.35}\left(T_{8}-T_{4}\right)=1.197872$
Estimate for $T: 1.20(2 \mathrm{dp})$ looks secure.

