Numerical Methods Overview (12/6/21)

Convergence

Q2 [Practice/M]

Complete the following table, where $e_r \approx k e_{r-1}$

$$X_{4n} \approx X_{2n} + k(X_{2n} - X_n)$$
$$X_{\infty} \approx X_{2n} + \frac{1}{\frac{1}{k} - 1}(X_{2n} - X_n)$$

(where X = T, M or S)

	Xth	Yth order	k	1
	order	convergence		$\frac{1}{1} - 1$
	method			<i>k</i> –
Fixed Point	n/a		$g'(\alpha)$	n/a
Newton	n/a		n/a	n/a
Raphson				
Forward				
Difference				
Central				
Difference				
Trapezium rule				
Midpoint rule				
Simpson's rule				

Integration

Q3 [Practice/M]

Obtain the extrapolation formula $T \approx T_{2n} + \frac{1}{3} (T_{2n} - T_n)$

from
$$T_{2n} - T \approx \frac{T_n - T}{4}$$

Q4 [Practice/M]

 $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \, dx$ is to be estimated. Complete the following table, by the quickest method. Give values to 6 dp.

n	T_n	M _n	S _n
1			
2			
4			
8			

Q5 [Practice/E]

Use the following Trapezium Rule estimates to obtain extrapolated values for T_{16} and T_{∞} .

n	T_n	
1	0.785398	
2	1.053137	
4	1.146955	
8	1.180051	

Q6 [Practice/M]

 $\int_0^1 \sqrt{x} \, dx$ is to be estimated. Complete the following table, by the quickest method. Give values to 6 dp.

	r	1	r
n	T_n	M_n	S_n
1			
2			
4			
8			

Q7 [Practice/E]

Using the S_n given, complete the following table of ratios of differences (where *S* is the exact value of $\frac{2}{3}$).

n	S _n	$S_n - S_{\frac{n}{2}}$	Ratios	$S_n - S$	Ratios
1					
2	0.638071				
4	0.656527				
8	0.663079				

Sol'n of Eq'ns

Q1 [Practice/E]

Describe the relative merits of the Secant method and the method of False Position.