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Moments (12 pages; 11/3/17) 

(1) In many Mechanics models, an object is treated as a particle. 

This means that any rotation of the object is not considered. In 

some cases this isn't appropriate. For example, in the diagram 

below, the forces on the object balance, but clearly the object is 

not in 'rotational equilibrium': overall, the forces have a turning 

effect. 

 

 

 

 

 

 

 

(2) In the diagram below, 𝐴𝐶 represents a door, with its hinge at 

𝐴. Clearly a force 𝐹 applied at 𝐶 will have a greater turning effect 

than the same force applied at 𝐵. 
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The turning effect of the force at 𝐶 (its moment) is defined to be 

−𝐹(2𝑎)  

More generally, it is the magnitude of the force × the 

perpendicular (ie shortest) distance of the line of action of the 

force from 𝐴 (ie the point about which 'moments are taken'), with 

a negative sign if the turning is in a clockwise sense. 

[Note: The vector specification of a force (ie its magnitude and 

direction) is not sufficient for dealing with rigid bodies: we also 

need to know the line along which it acts. This could be 

determined from a particular point where the force acts (together 

with the direction of the force).] 

The unit of a moment of a force is the 𝑁𝑚. 

 

(3) Most situations in which moments are used (at A level) 

concern rigid bodies 'in equilibrium'. This can usually be taken to 

mean that the object is stationary (though note that forces are 

said to be in equilibrium when an object is moving with constant 

velocity). 

We can then resolve forces in two perpendicular directions, and 

use Newton's 2nd law to set up two equations  

(ie 𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 = 𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙. = 0) 

We can also use the fact that there is rotational equilibrium to say 

that the net moment (of all the forces on the object) is zero; ie 

there is no net turning effect. 

The question remains as to which point to take moments about. 

It will be shown next that, provided the forces are in equilibrum, 

it doesn't matter which point we choose. Also, the point needn't 

actually be within the object itself (though it usually is). 



 fmng.uk 

3 
 

 

(4) Consider the rod in the diagram below, subject to the forces 

𝐹, 𝐺 & 𝐻. If the rod is in equilibrium, then 𝐹 + 𝐻 = 𝐺 (ie there is 

vertical equilibrium). [In other situations, we can also employ 

horizontal equilibrium.] 

 

 

 

 

 

 

The net moment can be calculated about 𝐴, 𝐵 𝑜𝑟 𝐶, as follows: 

Moments about 𝐴 [sometimes indicated by: 𝑀(𝐴)]: 

𝐺𝑎 − 𝐻(𝑎 + 𝑏) = (𝐹 + 𝐻)𝑎 − 𝐻(𝑎 + 𝑏) = 𝐹𝑎 − 𝐻𝑏  

Moments about 𝐵: 

𝐹𝑎 − 𝐻𝑏  

Moments about 𝐶: 

𝐹(𝑎 + 𝑏 + 𝑐) − 𝐺(𝑏 + 𝑐) + 𝐻𝑐  

= 𝐹(𝑎 + 𝑏 + 𝑐) − (𝐹 + 𝐻)(𝑏 + 𝑐) + 𝐻𝑐  

= 𝐹𝑎 − 𝐻𝑏  

And, in general, when the forces are balanced, taking moments 

about any point will give the same result. 

Then, because the rod is in rotational equilibrium, 𝐹𝑎 − 𝐻𝑏 = 0 
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(5) Some points will be more convenient to take moments about, 

for the following reasons: 

(i) If we are not interested in a particular force, or if it isn't 

known, then it may be avoided by taking moments about a point 

through which the force in question acts (eg taking moments 

about 𝐵, in the above example, if 𝐺 is unknown; note that, in this 

case, the equation 𝐹 + 𝐻 = 𝐺 would not be used - in order to keep 

𝐺 out of the working). 

(ii) Some points involve more complicated equations; eg taking 

moments about 𝐶 in the above example. In general, take moments 

about a point where as many forces as possible act. 

 

(6) Example: Children sitting on a seesaw  

The children have masses 40, 30 & 𝑋 𝑘𝑔, and the seesaw 

(assumed to be uniform) has mass 10𝑘𝑔. 

The problem is to find 𝑋, given that the seesaw is in equilibrium. 

 

 

 

 

 

 

 

The diagram is a force diagram for the seesaw (ie it shows all of 

the forces acting on the seesaw). 𝑅 is the reaction force of the 

supporting structure on the seesaw (and is unknown). 
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Thus, in this case there is no need to resolve forces vertically 

(giving an equation involving 𝑅). 

Instead, we can just take moments about 𝐴: 

Rotational equilibrum ⇒ 

40𝑔(3) − 30𝑔(1.5) − 𝑋𝑔(3) = 0 , 

so that 𝑋 =
120−45

3
= 25 

[𝑅 can then be found from 𝑅 = 40𝑔 + 10𝑔 + 30𝑔 + 𝑋𝑔, if 

required.] 

Note: As an alternative to equating the net moment to zero, we 

could say that the total clockwise moment equals the total anti-

clockwise moment. 

 

(7) Moments of forces at an angle 

Example (ladder resting against a wall) 

The ladder is of length 2𝑎 and mass 𝑚, and is assumed to be 

uniform, so that its centre of mass is at its mid-point. The wall is 

assumed to be smooth, so that the reaction at the wall, 𝑁 is 

perpendicular to the wall. The coefficient of friction between the 

ladder and the ground is 𝜇. Given that the ladder is resting at an 

angle 𝜃 to the ground, find the minimum possible value of 𝜇 in 

terms of 𝜃. 
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Approach 1 

Resolving vertically, 𝑅 = 𝑚𝑔. 

If we take moments about 𝐴, then one approach is to extend the 

lines of action of the forces, in order to find the perpendicular (ie 

shortest) distance between those lines and 𝐴. 

Thus, the perpendicular distance between 𝑚𝑔 (extended) and 𝐴 

is  𝑎𝑐𝑜𝑠𝜃; between 𝑅 (extended) and 𝐴: 2𝑎𝑐𝑜𝑠𝜃, and between 𝐹 

(extended) and 𝐴: 2𝑎𝑠𝑖𝑛𝜃. 

Then rotational equilibrium ⇒ the net moment about 𝐴 is zero, 

so that  −𝑚𝑔(𝑎𝑐𝑜𝑠𝜃) + 𝑅(2𝑎𝑐𝑜𝑠𝜃) − 𝐹(2𝑎𝑠𝑖𝑛𝜃) = 0 

Also, in the limiting case, where the ladder is about to slip, 

𝐹 = 𝜇𝑅 = 𝜇𝑚𝑔  

Thus  −𝑐𝑜𝑠𝜃 + 2𝑐𝑜𝑠𝜃 − 2𝜇𝑠𝑖𝑛𝜃 = 0, 

so that  𝜇 =
𝑐𝑜𝑠𝜃

2𝑠𝑖𝑛𝜃
=

1

2
𝑐𝑜𝑡𝜃 

(Note that, for larger 𝜃, a smaller value of 𝜇 will be sufficient to 

keep the ladder in place.) 

 

Approach 2 

An alternative way of finding the moments of the forces is to 

resolve each force, at a suitable point on its line of action, in two 

convenient perpendicular directions.  

Thus, 𝑚𝑔 can be resolved at 𝐵 into components along and 

perpendicular to the ladder. The component along the ladder then 

has no moment about 𝐴, whilst the component perpendicular to 

the ladder (𝑚𝑔𝑐𝑜𝑠𝜃) has moment  −(𝑚𝑔𝑐𝑜𝑠𝜃)𝑎. 

Similarly, 𝑅 has moment (𝑅𝑐𝑜𝑠𝜃)(2𝑎), whilst 𝐹 has moment  
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−(𝐹𝑠𝑖𝑛𝜃)(2𝑎). 

Thus each of the moment terms is the same as before. 

Note: In the case of the 𝑚𝑔 force, 𝐵 is the best place to resolve the 

force (as one of the components has zero moment about 𝐴). 

However, it can be shown that the same total moment would be 

obtained if the force were resolved at some other point on its line 

of action. 

 

(8) Alternative approaches 

Once forces have been resolved in two perpendicular directions 

and moments taken about a particular point, so that 3 equations 

have been created, it isn't possible to obtain an independent 4th 

equation by taking moments about another point; ie it will just 

duplicate information already obtained. 

However, it is possible to take moments about 2 points and 

resolve forces in just one direction - provided that this direction 

isn't perpendicular to the line joining the 2 points. 

Alternatively, it is possible to take moments about 3 points (and 

do no resolving of forces) - provided that the 3 points don't lie on 

a straight line. 

As it is usually simpler to resolve forces, rather than take 

moments, these alternative methods are not normally used. They 

could be used as a check though. 

 

(9) Couples 

The term 'couple' is used to describe a pair of equal but opposite 

forces, applied to an object, which don't have the same line of 

action, so that there is a turning effect. (It is sometimes also used 
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in the more general situation where there are more than two 

forces, which have a resultant of zero but a net non-zero 

moment.) 

As before, the fact that the forces are balanced means that it 

doesn't matter which point we take moments about. Thus, 

referring to the diagram below, we could take moments about A, 

for example, to give a net moment of 𝐹𝑑. 

 

 

 

 

 

 

 

 

 

(10) Hinged Joints 

Suppose that a rod is attached to a wall by a hinged joint (ie so 

that the angle can be varied). The hinge will often be described as 

'smooth'. This means that it offers no resistance to being turned; 

ie there is no moment within the hinge countering any external 

forces. (Were the hinge not to be smooth then the resistance to 

turning within the hinge could be thought of as due to the 

moment of a frictional force acting at a short distance from the 

centre of the hinge.) 
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(11) Reaction forces at a surface 

If a rod, say, is attached to a surface, then there will be a reaction 

force on the rod, at a particular angle. In practice, it is usually 

convenient to resolve this reaction force into two perpendicular 

components: along and perpendicular to the surface. Were the 

rod to be resting on the surface (say, if it were a ladder), then the 

component along the surface would be the frictional force. 

 

(12) Alternative approach to equilibrium problem 

 

 

 

 

 

 

 

 

 

Normally we show the reaction at the wall as being made up of 

two perpendicular components. However, if there are only two 

other forces, in addition to the reaction at the wall 𝑅, then we can 

take advantage of the fact that the 3 forces must be concurrent (ie 

their lines of action must meet at a point), in order for there to be 

rotational equilibrium. (Were the forces not to meet at a point, 

then taking moments about the point of intersection of two of the 

forces would give a non-zero moment, which would mean that the 

object was not in rotational equilibrium.) 
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Because the line of action of the force 𝑚𝑔 bisects the rod, there 

are two congruent right-angled triangles in the diagram, with the 

same corresponding angle 𝜃. 

 

 

 

 

 

 

 

Then, as the forces are balanced, they must form a vector triangle, 

as shown in the 2nd diagram. 

Hence, from the lower right-angled triangle,  
(

𝑚𝑔

2
)

𝐺
= 𝑠𝑖𝑛𝜃, 

so that the horizontal and vertical components of  𝐺 are 

𝐺𝑐𝑜𝑠𝜃 = (
𝑚𝑔

2
)

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
=

𝑚𝑔

2𝑡𝑎𝑛𝜃
  

and 𝐺𝑠𝑖𝑛𝜃 =
𝑚𝑔

2
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 (13) Toppling on a slope 

 

 

 

As discussed above, whenever there are 3 forces on an object that 

is in rotational equilibrium, the lines of action of these forces must 

meet at a common point. In the left hand diagram (where 𝐹 is the 

frictional force), the normal reaction 𝑅 must be acting at the point 

shown, in order for the forces to meet at a common point. In the 

right hand diagram, the extreme situation is reached where 𝑅 acts 

at the left hand corner (about which the object is liable to topple). 

Any increase in 𝜃 would cause toppling to occur, as it would not 

be possible for the line of action of 𝑅 to be any further to the left. 

Thus the angle of toppling is determined by the centre of mass of 

the block being directly above the left hand corner. Thus, in the 

diagram below, 𝑡𝑎𝑛𝜃 =
2

3
 (Note, as a check on the angle, that when 

the block is on a level surface, it points directly upwards and its 

left hand edge makes an angle of  0° with the vertical.) 
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(14) Toppling by an applied force 

 

 

 

 

 

 

 

 

 

When the block is about to topple, it will be pivoting about 𝐴, so 

that 𝑅 must act at 𝐴 (as this is the only point of contact between 

the block and the surface). 

As the block is not yet rotating, the total moment about 𝐴 must be 

zero. 

Thus   −2𝑃 + 40𝑔(0.5) = 0, 

so that 𝑃 =
1

2
(40)(9.8)(0.5) = 98 𝑁 

 

 


