Modulus Function (2 pages; 2/6/23)
(1) The modulus sign is difficult to manipulate mathematically. However, the modulus function can be broken down, as follows:

When $x \geq 0,|x|=x$
When $x<0,|x|=-x$
(2) Note that $\sqrt{x^{2}}=|x|$ (as, by convention, the square root symbol denotes the positive root [consider the quadratic formula, which needs a $\pm \sqrt{ }$ for this reason]).
(3) Example: $y=|x-2|+1$

Case (i): $x-2 \geq 0$
$\Rightarrow y=x-2+1=x-1$
Case (ii) : $x-2<0$
$\Rightarrow y=-(x-2)+1=3-x$
So, for $x<2$ we have the straight line $y=3-x$, and for $x \geq 2$ we have the straight line $y=x-1$.

[Analogy with $y=(x-2)^{2}+1$: The function: $y=|x-2|$ is similar to $y=(x-2)^{2}$, in that they both take non-negative values only and are symmetric about $x=2$.

The quadratic function $y=(x-2)^{2}+1$ has a minimum at $(2,1)$ and the same is true of $y=|x-2|+1$.]
(4) For $y=|x-1|+|x+2|$, consider the cases

$$
x \leq-2,-2<x<1, x \geq 1
$$

(5) For $y=|f(x)|$, when $f(x)=0$, there will be a cusp.

Note when sketching the curve that $f^{\prime}\left(x_{0}+\delta\right)=-f^{\prime}\left(x_{0}-\delta\right)$.

