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Matrices - Exercises: General (Solutions) 

(14 pages; 10/1/20) 

 

(1*) Prove  that (
𝑎 𝑐
𝑏 𝑑

)
−1

=
1

𝑎𝑑−𝑏𝑐
(

𝑑 −𝑐
−𝑏 𝑎

) 

Solution 

Suppose that  (
𝑒 𝑔
𝑓 ℎ) (

𝑎 𝑐
𝑏 𝑑

) = (
1 0
0 1

) 

Then  𝑎𝑓 + 𝑏ℎ = 0  &  𝑐𝑒 + 𝑑𝑔 = 0 

So ℎ = −
𝑎𝑓

𝑏
 &  𝑔 = −

𝑐𝑒

𝑑
   (*) 

Also  𝑎𝑒 + 𝑏𝑔 = 1  &  𝑐𝑓 + 𝑑ℎ = 1, 

so that   𝑎𝑒 −
𝑏𝑐𝑒

𝑑
= 1 ⇒ 𝑒(𝑎𝑑 − 𝑏𝑐) = 𝑑 

and  𝑐𝑓 −
𝑑𝑎𝑓

𝑏
= 1 ⇒ 𝑓(𝑏𝑐 − 𝑎𝑑) = 𝑏 

Let  Δ = 𝑎𝑑 − 𝑏𝑐 

Then  𝑒 =
𝑑

Δ
  & 𝑓 = −

𝑏

Δ
 

And, from (*), 𝑔 = −
𝑐

Δ
  &  ℎ =

𝑎

Δ
 

Thus  (
𝑒 𝑔
𝑓 ℎ) =

1

Δ
(

𝑑 −𝑐
−𝑏 𝑎

) 

 

(2***) Show that if  N is the left inverse of M, so that 𝑁𝑀 = 𝐼, then 

it is also the right inverse. 

Solution 

Define 𝑁𝐿 to be the left inverse of N, so that 𝑁𝐿𝑁 = 𝐼 

𝑁𝑀 = 𝐼  

⇒ 𝑁𝐿(𝑁𝑀) = 𝑁𝐿𝐼 = 𝑁𝐿  
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⇒ (𝑁𝐿𝑁)𝑀 = 𝑁𝐿  

⇒ 𝐼𝑀 = 𝑁𝐿    

⇒ 𝑀 = 𝑁𝐿    

⇒ 𝑀𝑁 = 𝑁𝐿𝑁 = 𝐼  

ie N is the right inverse of M 

 

(3**) Prove that (𝐴𝐵)−1 = 𝐵−1𝐴−1 

Solution 

Let  𝑋 = 𝐴𝐵 

Then   𝑋𝑋−1 = 𝐼,  so that   𝐴𝐵𝑋−1 = 𝐼 

Hence   𝐴−1𝐴𝐵𝑋−1 = 𝐴−1𝐼, 

so that  𝐵𝑋−1 = 𝐴−1 

Then  𝐵−1𝐵𝑋−1 = 𝐵−1𝐴−1,  

so that  𝑋−1 = 𝐵−1𝐴−1 

 

(4***) Suppose that the following pair of equations enables 

(𝑥′, 𝑡′) to be determined from (𝑥, 𝑡): 

𝑥′ = 𝛾(𝑥 − 𝑣𝑡) &  𝑡′ = 𝛾(𝑡 −
𝑥𝑣

𝑐2)   (A) 

and that it is also true that 

𝑥 = 𝛾(𝑥′ + 𝑣𝑡′) &  𝑡 = 𝛾(𝑡′ +
𝑥′𝑣

𝑐2 )  (B) 

[These are the transformation equations in Special Relativity 

between two frames of reference that are moving with a relative 

speed of 𝑣. Starting with (A), (B) is obtained by reversing the 

roles of the two frames (so that the speed is reversed as well).] 

Use matrix multiplication to find an expression for 𝛾 in terms of 

𝑣 & 𝑐. 
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Solution 

𝑥′ = 𝛾(𝑥 − 𝑣𝑡) &  𝑡′ = 𝛾(𝑡 −
𝑥𝑣

𝑐2)    

⇒ (𝑥′
𝑡′

) = 𝛾 (
1 −𝑣

−
𝑣

𝑐2 1 ) (
𝑥
𝑡

)  

and  𝑥 = 𝛾(𝑥′ + 𝑣𝑡′) &  𝑡 = 𝛾(𝑡′ +
𝑥′𝑣

𝑐2 )   

⇒ (
𝑥
𝑡

) = 𝛾 (
1 𝑣
𝑣

𝑐2 1) (𝑥′
𝑡′

)  

Hence  (𝑥′
𝑡′

) = 𝛾 (
1 −𝑣

−
𝑣

𝑐2 1 ) 𝛾 (
1 𝑣
𝑣

𝑐2 1) (𝑥′
𝑡′

) 

and so   𝛾 (
1 −𝑣

−
𝑣

𝑐2 1 ) 𝛾 (
1 𝑣
𝑣

𝑐2 1) = (
1 0
0 1

) 

giving  𝛾2 (
1 −

𝑣2

𝑐2 0

0 1 −
𝑣2

𝑐2

) = (
1 0
0 1

) 

and hence  𝛾 =
1

√1−
𝑣2

𝑐2

   

[This is the Lorentz factor.]  

 

(5***) Assuming that (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 ,  prove that (𝐴𝑇)−1 = (𝐴−1)𝑇 

Solution 

Let  𝐵 = (𝐴𝑇)−1, so that 𝐵𝐴𝑇 = 𝐼  (1) 

Result to prove:  𝐵 = (𝐴−1)𝑇 

[Noting that this is equivalent to 𝐵𝑇 = 𝐴−1, it seems promising to 

involve  𝐵𝑇] 

From (1), (𝐵𝐴𝑇)𝑇 = 𝐼𝑇 = 𝐼, so that  𝐴𝐵𝑇 = 𝐼, 

and hence 𝐵𝑇 = 𝐴−1 and 𝐵 = (𝐴−1)𝑇 , as required. 
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(6***)(i) Three planes are represented by the following 

equations: 

𝑥 − 𝑦 + 𝑧 = 1  

2𝑥 + 𝑘𝑦 + 2𝑧 = 3  

𝑥 + 3𝑦 + 3𝑧 = 5  

For what value of 𝑘 do the planes not meet at a single point? For 

this value of 𝑘 how are the planes configured? 

(ii) If 𝑘 = 2, find the point of intersection, using matrices. 

Solution 

(i)  (
1 −1 1
2 𝑘 2
1 3 3

) (
𝑥
𝑦
𝑧

) = (
1
3
5

)  

 

|
1 −1 1
2 𝑘 2
1 3 3

| = (3𝑘 − 6) + (6 − 2) + (6 − 𝑘)  [expanding by the 

1st row]  

= 2𝑘 + 4  

 

The equations don't have a unique solution when   2𝑘 + 4 = 0;  ie  

𝑘 = −2 

In that case, the equations are: 

𝑥 − 𝑦 + 𝑧 = 1  

2𝑥 − 2𝑦 + 2𝑧 = 3  

𝑥 + 3𝑦 + 3𝑧 = 5  
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As the direction vectors of the first two planes are (
1

−1
1

)  and  

(
2

−2
2

) , which are equivalent, and the constant terms on the RHS 

are not in the same ratio as the LHS terms, these planes are 

parallel, and the 3rd plane cuts both of the other planes (not 

being parallel to either of them).  

 

(ii) To solve   (
1 −1 1
2 2 2
1 3 3

) (
𝑥
𝑦
𝑧

) = (
1
3
5

) :  det  = 2𝑘 + 4 = 8 

and so   (
1 −1 1
2 2 2
1 3 3

)

−1

=
1

8
(

0 −4 4
6 2 −4

−4 0 4
)

𝑇

=

1

8
(

0 6 −4
−4 2 0
4 −4 4

)  

 

[eg   6 = −((−1) × 3 − 3 × 1); 2 = 1 × 3 − 1 × 1; 

 −4 = −(1 × 3 − 1 × (−1))]   

 

So   (
𝑥
𝑦
𝑧

) =
1

8
(

0 6 −4
−4 2 0
4 −4 4

) (
1
3
5

) =
1

8
(

−2
2

12
) =

1

4
(

−1
1
6

) 

 

ie  𝑥 =
−1

4
 , 𝑦 =

1

4
 , 𝑧 =  

3

2
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(7***) Factorise the determinant  |
𝑥2 − 𝑥 𝑦2 − 𝑦 𝑧2 − 𝑧

𝑥 𝑦 𝑧
1 1 1

| 

Solution 

𝐶2 → 𝐶2 − 𝐶1 & 𝐶3 → 𝐶3 − 𝐶1 ⇒  

 

|
𝑥2 − 𝑥 𝑦2 − 𝑦 − 𝑥2 + 𝑥 𝑧2 − 𝑧 − 𝑥2 + 𝑥

𝑥 𝑦 − 𝑥 𝑧 − 𝑥
1 0 0

|  

= |
𝑥2 − 𝑥 (𝑦2 − 𝑥2) − (𝑦 − 𝑥) (𝑧2 − 𝑥2) − (𝑧 − 𝑥)

𝑥 𝑦 − 𝑥 𝑧 − 𝑥
1 0 0

|  

= |
𝑥2 − 𝑥 (𝑦 − 𝑥)(𝑦 + 𝑥 − 1) (𝑧 − 𝑥)(𝑧 + 𝑥 − 1)

𝑥 𝑦 − 𝑥 𝑧 − 𝑥
1 0 0

|  

= (𝑦 − 𝑥)(𝑧 − 𝑥) |
𝑥2 − 𝑥 𝑦 + 𝑥 − 1 𝑧 + 𝑥 − 1

𝑥 1 1
1 0 0

|  

= (𝑦 − 𝑥)(𝑧 − 𝑥){𝑦 + 𝑥 − 1 − (𝑧 + 𝑥 − 1)}  

= (𝑦 − 𝑥)(𝑧 − 𝑥)(𝑦 − 𝑧)  

Alternatively: 

𝑅1 → 𝑅1 + 𝑅2 ⇒ |
𝑥2 𝑦2 𝑧2

𝑥 𝑦 𝑧
1 1 1

|  

𝐶2 → 𝐶2 − 𝐶1 & 𝐶3 → 𝐶3 − 𝐶1 ⇒ |
𝑥2 𝑦2 − 𝑥2 𝑧2 − 𝑥2

𝑥 𝑦 − 𝑥 𝑧 − 𝑥
1 0 0

|  

= (𝑦 − 𝑥)(𝑧 − 𝑥) |
𝑥2 𝑦 + 𝑥 𝑧 + 𝑥
𝑥 1 1
1 0 0

|  

= (𝑦 − 𝑥)(𝑧 − 𝑥)(𝑦 − 𝑧)  
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(8***) Find the value of 𝑘 for which the following equations are 

consistent. 

3𝑥 − 3𝑦 − 𝑧 = 𝑘  

2𝑥 − 𝑦 − 𝑧 = 5  

𝑥 + 4𝑦 − 2𝑧 = 7  

Solution 

3𝑥 − 3𝑦 − 𝑧 = 𝑘 (1) 

2𝑥 − 𝑦 − 𝑧 = 5 (2) 

𝑥 + 4𝑦 − 2𝑧 = 7 (3) 

Method 1 

Using (2) to eliminate 𝑧 in (1) & (3): 

3𝑥 − 3𝑦 − (2𝑥 − 𝑦 − 5) = 𝑘; ie 𝑥 − 2𝑦 = 𝑘 − 5 (1') 

𝑥 + 4𝑦 − 2(2𝑥 − 𝑦 − 5) = 7 ; ie −3𝑥 + 6𝑦 = −3  

and 𝑥 − 2𝑦 = 1  (3') 

Hence, 𝑘 − 5 = 1 for consistency, so that 𝑘 = 6 

Method 2 

|
3 −3 −1
2 −1 −1
1 4 −2

| = 3(6) − 2(10) + 1(2) = 0  

By Cramer's rule, 𝑥 =

|
𝑘 −3 −1
5 −1 −1
7 4 −2

|

|
3 −3 −1
2 −1 −1
1 4 −2

|

, and this will only have a value if 

|
𝑘 −3 −1
5 −1 −1
7 4 −2

| = 0  

ie when 𝑘(6) − 5(10) + 7(2) = 0, 

so that 6𝑘 = 36; 𝑘 = 6 
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(9***) Show that the following three planes meet in a line, giving 
the equation of that line in cartesian form. 
 
𝑥 − 𝑦 + 3𝑧 = 4  
4𝑥 + 5𝑦 − 2𝑧 = 8  
𝑥 + 17𝑦 − 25𝑧 = −12  
 
Solution 
 
First of all, none of the lines are parallel to each other. 
 

Then |
1 −1 3
4 5 −2
1 17 −25

| = 1(−91) − (−1)(−98) + 3(63) = 0 

 
[as expected for this sort of question] 
 
So the planes will either be configured as a sheaf (if they have a 
line of intersection) or as a triangular prism (if not). 
 
[In some cases it may be possible to spot that one equation is a 
combination of the other two, showing that the equations are 
consistent, and that they meet in a line.] 
 
𝑥 − 𝑦 + 3𝑧 = 4   (1) 
4𝑥 + 5𝑦 − 2𝑧 = 8 (2) 
𝑥 + 17𝑦 − 25𝑧 = −12(3) 
 
Substituting for 𝑥 (say), from (1) into (2) gives: 
 
4(4 + 𝑦 − 3𝑧) + 5𝑦 − 2𝑧 = 8, so that 9𝑦 − 14𝑧 = −8 
 
Substituting into (3) gives: 
 
(4 + 𝑦 − 3𝑧) + 17𝑦 − 25𝑧 = −12, so that 18𝑦 − 28𝑧 = −16, 
 
which is the same equation, and hence the planes meet as a sheaf. 
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To find the line of intersection, let 𝑥 = 𝜆 (say). 
 
Then, from (1), −𝑦 + 3𝑧 = 4 − 𝜆  (3) 
 
and from (2), 5𝑦 − 2𝑧 = 8 − 4𝜆  (4) 
 
Then 5(3) + (4) ⇒ 13𝑧 = 28 − 9𝜆 
 
and 2(3) + 3(4) ⇒ 13𝑦 = 32 − 14𝜆, 
 

so that the equation of the line is (
𝑥
𝑦
𝑧

) =
1

13
(

13𝜆
32 − 14𝜆
28 − 9𝜆

) 

 

or  
𝑥

13
=

𝑦−
32

13

−14
=

𝑧−
28

13

−9
 

 
[As a check, points on the line where 𝜆 = 0 and 1 could be 
substituted into the equations of the planes. 
 
Also, it can be shown that the determinant formed by replacing 
(any) one of the columns of the matrix by the right-hand values 
will be zero when the equations are consistent. (Consider the 2 ×
2 case to see why this is likely to be true.) 
 

Thus  |
1 −1 4
4 5 8
1 17 −12

| = 1(−196) − (−1)(−56) + 4(63) = 0, for 

example.] 
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(10***) Write the determinant |
1 𝑥2 𝑥4

1 𝑦2 𝑦4

1 𝑧2 𝑧4

| as a product of linear 

factors. 

Solution 

Replacing row 1 with row 1 - row 2,  
 

 𝐷 = |
1 𝑥2 𝑥4

1 𝑦2 𝑦4

1 𝑧2 𝑧4

| = |
0 𝑥2 − 𝑦2 𝑥4 − 𝑦4

1 𝑦2 𝑦4

1 𝑧2 𝑧4

| 

= (𝑥2 − 𝑦2) |
0 1 𝑥2 + 𝑦2

1 𝑦2 𝑦4

1 𝑧2 𝑧4

|  

 
Similarly, replacing row 2 with row 2 - row 3, 
 

𝐷 = (𝑥2 − 𝑦2)(𝑦2 − 𝑧2) |
0 1 𝑥2 + 𝑦2

0 1 𝑦2 + 𝑧2

1 𝑧2 𝑧4

|  

 
= (𝑥2 − 𝑦2)(𝑦2 − 𝑧2)(𝑦2 + 𝑧2 − [𝑥2 + 𝑦2])  
 
= (𝑥2 − 𝑦2)(𝑦2 − 𝑧2)(𝑧2 − 𝑥2)  
 
= (𝑥 − 𝑦)(𝑥 + 𝑦)(𝑦 − 𝑧)(𝑦 + 𝑧)(𝑧 − 𝑥)(𝑧 + 𝑥)  
 
 

(11****) Find the condition(s) for two 2 × 2 matrices to 

commute. 

Solution 

(
𝑎 𝑐
𝑏 𝑑

) (
𝑒 𝑔
𝑓 ℎ) = (

𝑒 𝑔
𝑓 ℎ) (

𝑎 𝑐
𝑏 𝑑

)  

⇒ 𝑎𝑒 + 𝑐𝑓 = 𝑎𝑒 + 𝑏𝑔 ⇒
𝑏

𝑐
=

𝑓

𝑔
  (1) 
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Also  𝑏𝑔 + 𝑑ℎ = 𝑐𝑓 + 𝑑ℎ ⇒ same condition 

Then   𝑏𝑒 + 𝑑𝑓 = 𝑎𝑓 + 𝑏ℎ   (2)  and  𝑎𝑔 + 𝑐ℎ = 𝑐𝑒 + 𝑑𝑔  (3) 

(2) ⇒ 𝑏(𝑒 − ℎ) = 𝑓(𝑎 − 𝑑)   and (3) ⇒ 𝑐(ℎ − 𝑒) = 𝑔(𝑑 − 𝑎) 

From (1),  
𝑏

𝑓
=

𝑐

𝑔
  and so both of the above produce the same 

condition: 

𝑏

𝑓
=

𝑎−𝑑

𝑒−ℎ
⇒

𝑎−𝑑

𝑏
=

𝑒−ℎ

𝑓
  (4) 

 

Thus, two 2 × 2 matrices commute if the quantities  
𝑏

𝑐
  and 

𝑎−𝑑

𝑏
  in 

one matrix match the corresponding quantities in the other.  

 

As an example, we could choose the matrices  (
1 3
2 4

) and (
5 𝑔
6 ℎ

). 

Then  𝑔 = 6 ×
3

2
= 9   and  

ℎ−5

6
=

4−1

2
⇒ ℎ = 14 

Check:  (
1 3
2 4

) (
5 9
6 14

) = (
23 51
34 74

) 

and   (
5 9
6 14

) (
1 3
2 4

) = (
23 51
34 74

) 

To test the conditions on a matrix  (
𝑎 𝑐
𝑏 𝑑

)  and its inverse, 

1

𝑎𝑑−𝑏𝑐
(

𝑑 −𝑐
−𝑏 𝑎

) 

(i) 
−𝑏/(𝑎𝑑−𝑏𝑐)

−𝑐/(𝑎𝑑−𝑏𝑐)
=

𝑏

𝑐
 

(ii)  
(𝑑−𝑎)/(𝑎𝑑−𝑏𝑐)

−𝑏/(𝑎𝑑−𝑏𝑐)
=

𝑎−𝑑

𝑏
 

 

(12****) Given that a 3 × 3 determinant can always be reduced to 

triangular form (in the same way as simultaneous equations), to 
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produce a multiple of |
1 𝑎 𝑏
0 1 𝑐
0 0 1

| , show that it can be further 

reduced to a multiple of the Identity matrix. [Obviously this is an 

academic exercise, as the determinant can be evaluated as soon as 

triangular form has been reached.] 

Solution 

From |
1 𝑎 𝑏
0 1 𝑐
0 0 1

|,  if 𝑅1 → 𝑅1 − 𝑎(𝑅2), we get  |
1 0 𝑏 − 𝑎𝑐
0 1 𝑐
0 0 1

| 

Then, 𝐶3 → 𝐶3 − 𝑐(𝐶2) gives |
1 0 𝑏 − 𝑎𝑐
0 1 0
0 0 1

| 

and finally  𝑅1 → 𝑅1 − (𝑏 − 𝑎𝑐)(𝑅3) gives |
1 0 0
0 1 0
0 0 1

| 

[Note that no further factors have had to be taken outside the 

determinant - as expected, since |
1 𝑎 𝑏
0 1 𝑐
0 0 1

| = 1] 

 

 

(13****) Show that a matrix is orthogonal if and only if 

(i) its columns are mutually orthogonal (ie perpendicular, so that 
their scalar product is zero), and 
(ii) each column has unit magnitude 

Solution 

A matrix 𝑃 is orthogonal when 𝑃−1 = 𝑃𝑇; ie when 𝑃𝑃𝑇 = 𝐼 

Suppose that  𝑃 = (

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

), 
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so that 𝑃𝑃𝑇 = (

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

) (

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

) 

Then the diagonal entries will be 1 when the 3 columns of 𝑃 have 

unit magnitude, and the non-diagonal entries will be 0 when the 

columns are mutually orthogonal. 

 

(14****) Find 𝑐, 𝑎 & 𝑏 such that  (
2
3
𝑐

) = 𝑎 (
−1
0
3

) + 𝑏 (
0
2
4

)   

[ie such that the 3 vectors are not linearly independent] 

Solution 

As the position vector  (
2
3
𝑐

) is in the plane containing the Origin 

and the position vectors (
−1
0
3

) & (
0
2
4

) , it follows that  (
2
3
𝑐

) is 

perpendicular to the normal to that plane; ie  perpendicular to 

(
−1
0
3

) × (
0
2
4

) = |

𝑖 −1 0

𝑗 0 2

𝑘 3 4

| ; so that 

(
2
3
𝑐

) . |

𝑖 −1 0

𝑗 0 2

𝑘 3 4

| = 0  , and thus  |
2 −1 0
3 0 2
𝑐 3 4

| = 0   

 

Alternative Approach 1 

The 3 vectors form a parallelepiped of zero volume, so that the 

scalar triple product of the vectors is zero.] 

 

Alternative Approach 2 
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The required relation can be written as 

(
2
3
𝑐

) − 𝑎 (
−1
0
3

) − 𝑏 (
0
2
4

) = (
0
0
0

) , 

which implies a solution of   𝑥 (
2
3
𝑐

) + 𝑦 (
−1
0
3

) + 𝑧 (
0
2
4

) = (
0
0
0

) 

other than  𝑥 = 𝑦 = 𝑧 = 0, 

and for there to be more than one solution to this matrix 

equation, we require the determinant to be zero. ∎ 

 

Then  |
2 −1 0
3 0 2
𝑐 3 4

| = 0 ⇒ 2(−6) − (−1)(12 − 2𝑐) = 0   

⇒ 𝑐 = 0  

 

(
2
3
0

) = 𝑎 (
−1
0
3

) + 𝑏 (
0
2
4

)  

⇒ 2 = −𝑎      

     3 = 2𝑏 

&  0 = 3𝑎 + 4𝑏  

so that 𝑎 = −2 & 𝑏 =
3

2
 

 

 


