Matrices - Exercises: General (3 pages; 10/1/20)

Key to difficulty:

* introductory exercise

** light A Level (FM) standard

*** harder A Level (FM) standard

**** harder than A Level (FM)

(1*) Prove that
$$\begin{pmatrix} a & c \\ b & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$

 (2^{***}) Show that if N is the left inverse of M, so that NM = I, then it is also the right inverse.

$$(3^{**})$$
 Prove that $(AB)^{-1} = B^{-1}A^{-1}$

 (4^{***}) Suppose that the following pair of equations enables (x',t') to be determined from (x,t):

$$x' = \gamma(x - vt) \& t' = \gamma(t - \frac{xv}{c^2})$$
 (A)

and that it is also true that

$$x = \gamma(x' + vt') \& t = \gamma(t' + \frac{x'v}{c^2})$$
 (B)

[These are the transformation equations in Special Relativity between two frames of reference that are moving with a relative speed of v. Starting with (A), (B) is obtained by reversing the roles of the two frames (so that the speed is reversed as well).]

Use matrix multiplication to find an expression for γ in terms of v & c.

$$(5^{***})$$
 Assuming that $(AB)^T = B^T A^T$, prove that $(A^T)^{-1} = (A^{-1})^T$

 $(6^{***})(i)$ Three planes are represented by the following equations:

$$x - y + z = 1$$
$$2x + ky + 2z = 3$$
$$x + 3y + 3z = 5$$

For what value of k do the planes not meet at a single point? For this value of k how are the planes configured?

(ii) If k = 2, find the point of intersection, using matrices.

(7***) Factorise the determinant
$$\begin{vmatrix} x^2 - x & y^2 - y & z^2 - z \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix}$$

 (8^{***}) Find the value of k for which the following equations are consistent.

$$3x - 3y - z = k$$
$$2x - y - z = 5$$
$$x + 4y - 2z = 7$$

(9***) Show that the following three planes meet in a line, giving the equation of that line in cartesian form.

$$x - y + 3z = 4$$

$$4x + 5y - 2z = 8$$

$$x + 17y - 25z = -12$$

(10***) Write the determinant $\begin{vmatrix} 1 & x^2 & x^4 \\ 1 & y^2 & y^4 \\ 1 & z^2 & z^4 \end{vmatrix}$ as a product of linear factors.

 (11^{****}) Find the condition(s) for two 2 × 2 matrices to commute.

 (12^{****}) Given that a 3×3 determinant can always be reduced to triangular form (in the same way as simultaneous equations), to

produce a multiple of
$$\begin{vmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{vmatrix}$$
, show that it can be further

reduced to a multiple of the Identity matrix. [Obviously this is an academic exercise, as the determinant can be evaluated as soon as triangular form has been reached.]

(13****) Show that a matrix is orthogonal if and only if

- (i) its columns are mutually orthogonal (ie perpendicular, so that their scalar product is zero), and
- (ii) each column has unit magnitude

(14****) Find
$$c$$
, $a \& b$ such that $\begin{pmatrix} 2 \\ 3 \\ c \end{pmatrix} = a \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} + b \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$

[ie such that the 3 vectors are not linearly independent]