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Matrices - Exercises: Eigenvectors (Solutions) 

(15 pages; 13/8/19) 

 

(1) Find  (
2 1
2 3

)
3

 , using eigenvectors.   

Solution 

To find the eigenvalues of   𝑀 = (
2 1
2 3

): 

[ We want a non-zero solution of   (
2 1
2 3

) (
𝑥
𝑦) = 𝜆 (

𝑥
𝑦); 

ie of   (𝑀 − 𝜆𝐼) (
𝑥
𝑦) = 0 ; for there to be more than one solution 

(ie a non-zero solution, as well as the zero solution), |𝑀 − 𝜆𝐼| = 0;  

ie  |
2 − 𝜆 1

2 3 − 𝜆
| = 0 ] 

The characteristic equation is  |
2 − 𝜆 1

2 3 − 𝜆
| = 0, 

so that   (2 − 𝜆)(3 − 𝜆) − 2 = 0   and   𝜆2 − 5𝜆 + 4 = 0 

⇒ (𝜆 − 1)(𝜆 − 4) = 0  

Thus the eigenvalues are   𝜆 = 1  and  4 

The eigenvectors satisfy  (
2 − 𝜆 1

2 3 − 𝜆
) (

𝑥
𝑦) = (

0
0

) 

For  𝜆 = 1:    𝑥 + 𝑦 = 0 ; 2𝑥 + 2𝑦 = 0  

[as a check, these equations should be equivalent, and so 

producing more than one solution] 

Thus  an eigenvector for  𝜆 = 1 is  (
1

−1
). 

For  𝜆 = 4:  − 2𝑥 + 𝑦 = 0 ; 2𝑥 − 𝑦 = 0  

Thus  an eigenvector for  𝜆 = 4 is  (
1
2

). 
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[Note: any multiples of these eigenvectors are also solutions, and 

so there is an infinite number of solutions] 

 

Let  𝑆 = (
1 1

−1 2
)  and  𝐷 = (

1 0
0 4

) 

Then  𝑀𝑆 = 𝑆𝐷 

[considering the columns of S separately, and noting that  

(
1 1

−1 2
) (

0
1

) = (
1
2

), and so  (
1 1

−1 2
) (

0
4

) = 4 (
1
2

) ; thus  

(
2 1
2 3

) (
1
2

) = 4 (
1
2

), and similarly for the 1st column] 

and hence  𝑀 = 𝑆𝐷𝑆−1 

so that  𝑀3 = (𝑆𝐷𝑆−1)(𝑆𝐷𝑆−1)(𝑆𝐷𝑆−1) = 𝑆𝐷3𝑆−1 

=
1

3
(

1 1
−1 2

) (
1 0
0 64

) (
2 −1
1 1

)  

=
1

3
(

1 64
−1 128

) (
2 −1
1 1

)  

=
1

3
(

66 63
126 129

) = (
22 21
42 43

)  

[we would obviously expect to have only integers in the answer, 

being a power of M] 

Check: (
2 1
2 3

)
3

= (
2 1
2 3

) (
2 1
2 3

) (
2 1
2 3

) = (
6 5

10 11
) (

2 1
2 3

) =

(
22 21
42 43

)  

 

 

(2) If matrices 𝑀 & 𝑁 (both square, of the same order) share an 

eigenvector, what can be said about the eigenvectors and 

eigenvalues of 𝑀𝑁 𝑎𝑛𝑑 𝑁𝑀? 
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Solution 

Let  𝑀𝑥 = 𝜆𝑥  and  𝑁𝑥 = 𝜇𝑥 

Then (𝑀𝑁)𝑥 = 𝑀(𝑁𝑥) = 𝑀(𝜇𝑥) = 𝜇(𝑀𝑥) = 𝜇𝜆𝑥 

Thus 𝑀𝑁,  and similarly 𝑁𝑀, also have this same eigenvector, and 

the associated eigenvalue is the product of the corresponding 

eigenvalues for 𝑀 & 𝑁. 

 

(3) Given that the eigenvalues of  (
3 −1 1

−1 3 1
1 1 3

) are 4, 4 and 1, 

establish the geometrical significance of the eigenvectors. 

Solution 

First of all, the eigenvector associated with the eigenvalue of 1 

will be a line of invariant points (through the Origin) [All 

eigenvectors are invariant lines through the Origin, and are lines 

of invariant points when the eigenvalue is 1.] 

[When there are repeated eigenvalues, there will either be an 

invariant plane or an invariant line. When there aren't repeated 

eigenvalues, there can only be an invariant line. See "Matrices - 

notes".] 

(
3 − 4 −1 1

−1 3 − 4 1
1 1 3 − 4

) (
𝑥
𝑦
𝑧

) = (
0
0
0

) , 

giving −𝑥 − 𝑦 + 𝑧 = 0 (3 times) 

This is the equation of a plane; ie the invariant plane of the 

transformation (all points map to another point in the plane.) 
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(4) (i) Show that the eigenvalues of the matrix (
2 −1 1
1 0 1
1 −1 2

) are 1 

(repeated) and 2 (for example, by using row or column 

operations), and investigate the geometrical significance of the 

eigenvectors. 

(ii) Construct another matrix with the same eigenvalues, and 

hence establish that the geometrical result in (i) does not hold in 

general. 

Solution 

The characteristic equation for the matrix is 

|
2 − 𝜆 −1 1

1 −𝜆 1
1 −1 2 − 𝜆

| = 0 , 

As the eigenvalues have been given, we could (if only for practice 

at manipulating determinants) look for row or column operations 

that produce the required factorisation. 

For example, replacing column 2 with column 2 + column 3: 

|
2 − 𝜆 0 1

1 1 − 𝜆 1
1 1 − 𝜆 2 − 𝜆

| = 0 , 

so that (1 − 𝜆) |
2 − 𝜆 0 1

1 1 1
1 1 2 − 𝜆

| = 0 

[Note that, if two 0s can be created in a row or column, then a 

factor can be taken out; whilst the presence of one 0 means that 

any common factor of the other two elements in the row or 

column can be taken out. For example, if two rows (or columns) 

of the matrix share two corresponding elements, then it will be 

possible to create two 0s, by subtracting one row from the other. ] 

As the 2nd and 3rd rows share two corresponding elements, we 

can replace row 3 with row 3 − row 2, to give: 
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 (1 − 𝜆) |
2 − 𝜆 0 1

1 1 1
0 0 1 − 𝜆

| = 0 , 

and so  (1 − 𝜆)(1 − 𝜆)(2 − 𝜆), expanding by the 3rd row. 

Thus the eigenvalues are 1 (repeated) and 2. 

To find the eigenvectors: 

𝜆 = 1 ⇒ (
1 −1 1
1 −1 1
1 −1 1

) (
𝑥
𝑦
𝑧

) = (
0
0
0

)  

so that we have the plane  𝑥 − 𝑦 + 𝑧 = 0 

Thus any point in this plane will be mapped to itself (as the 

eigenvalue is 1); ie it is a plane of invariant points. 

The plane can also be presented in the form  𝑟 = 𝛼𝑎 + 𝛽𝑏 , where  

𝑎 & 𝑏 are any two independent vectors in the plane. 

For example,  𝑟 = 𝛼 (
1
1
0

) + 𝛽 (
0
1
1

) 

Thus  (
1
1
0

) & (
0
1
1

) are two eigenvectors of the transformation 

(though they are not unique). 

𝜆 = 2 ⇒ (
0 −1 1
1 −2 1
1 −1 0

) (
𝑥
𝑦
𝑧

) = (
0
0
0

) , 

so that −𝑦 + 𝑧 = 0, 𝑥 − 2𝑦 + 𝑧 = 0  &  𝑥 − 𝑦 = 0 

Then let 𝑥 = 𝜇 (for example), so that 𝑦 = 𝜇 & 𝑧 = 𝜇, 

and we have the eigenvector  (
1
1
1

) , which just represents the 

usual invariant line through the Origin. 
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(ii) We want the characteristic equation to be 

(𝜆 − 1)2(𝜆 − 2) = 0  

leading to  𝜆3 − 4𝜆2 + 5𝜆 − 2 = 0  (1) 

We could then set up a suitably general characteristic equation 

such as  |
𝑎 − 𝜆 0 𝑐

1 −𝜆 0
1 𝑏 −𝜆

| = 0  (2)  

and equate coefficients with (1). 

Thus (2) becomes (𝑎 − 𝜆)𝜆2 + 𝑐(𝑏 + 𝜆) = 0  (3) 

[A bit of experimentation is necessary in arriving at the 

determinant in (2), in order that (3) is sufficiently general.] 

Then, equating the coefficients in (1) & (3) gives: 

𝑎 = 4, 𝑐 = −5 & 𝑏 = −
2

5
  

so that (2) becomes  |

4 − 𝜆 0 −5
1 −𝜆 0

1 −
2

5
−𝜆

| = 0   

[It is probably worth checking that this produces the required 

eigenvalues of 1 and 2.] 

The eigenvectors corresponding to 𝜆 = 1 are then found from: 

(

3 0 −5
1 −1 0

1 −
2

5
−1

) (
𝑥
𝑦
𝑧

) = (
0
0
0

)  

so that  3𝑥 − 5𝑧 = 0, 𝑥 − 𝑦 = 0  &  𝑥 −
2𝑦

5
− 𝑧 = 0 

Then let 𝑥 = 𝜇,  so that 𝑦 = 𝜇 & 𝑧 =
3𝜇

5
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Thus an eigenvector is (
5
5
3

) , and we don't have the plane that was 

found in (i); only a line of invariant points (through the Origin). 

[The (advanced) theory behind this is based on the following 

theorem: "The geometric multiplicity of an eigenvalue does not 

exceed its algebraic multiplicity." The algebraic multiplicity is the 

number of times that the eigenvalue appears as a root of the 

characteristic equation. The geometric multiplicity is the 

dimension of the line or plane relating to the eigenvalue: so an 

invariant line means a geometric multiplicity of 1, whilst an 

invariant plane means a geometric multiplicity of 2. So, by this 

theorem, there have to be repeated eigenvalues in order for there 

to be an invariant plane, but if there are repeated eigenvalues it 

doesn't follow that there will be an invariant plane.] 

 

(5) For a 3 × 3 matrix 𝑀, show that  

(i) the product of the eigenvalues of 𝑀 equals det 𝑀 

(ii) the sum of the eigenvalues equals the sum of the elements on 

the leading diagonal of 𝑀 (from top left to bottom right; this sum 

is called the trace of 𝑀, or 𝑡𝑟𝑀) 

Solution 

(i) The eigenvalues of 𝑀 are the roots of  𝑓(𝜆) = 𝑑𝑒𝑡(𝑀 − 𝜆𝐼) = 0, 

considered as a cubic equation in 𝜆. 

𝑓(𝜆) can be written as 𝑔(𝜆) = −(𝜆 − 𝜆1)(𝜆 − 𝜆1)(𝜆 − 𝜆1)  

(as the determinant will contain the term −𝜆3) 

Then we note that 𝑓(0) = 𝑑𝑒𝑡𝑀  &  𝑔(0) = 𝜆1𝜆2𝜆3, so that the 

constant term of  𝑓(𝜆) = 𝑔(𝜆) is  𝑑𝑒𝑡𝑀 = 𝜆1𝜆2𝜆3. 
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(ii) 𝜆1 + 𝜆2 + 𝜆3 = −
𝑏

𝑎
 , where 𝑎 & 𝑏 are the coefficients of 𝜆3 & 𝜆2 

in  𝑑𝑒𝑡(𝑀 − 𝜆𝐼) = |
𝑐 − 𝜆 𝑓 𝑖

𝑑 𝑔 − 𝜆 𝑗
𝑒 ℎ 𝑘 − 𝜆

| 

The only terms involving 𝜆2 are contained in 

 (𝑐 − 𝜆)(𝑔 − 𝜆)(𝑘 − 𝜆), and 𝑏 = 𝑐 + 𝑔 + 𝑘 

Then, as 𝑎 = −1,  𝜆1 + 𝜆2 + 𝜆3 = 𝑐 + 𝑔 + 𝑘; ie 𝑡𝑟𝑀. 

 

(6) (i) If 𝑠1, 𝑠2 & 𝑠3 are eigenvectors corresponding to distinct 

eigenvalues 𝜆1, 𝜆2 & 𝜆3  of a 3 × 3 matrix 𝑀, prove that 𝑠1, 𝑠2 & 𝑠3 

cannot be coplanar. 

(ii) Deduce that a 3 × 3 matrix with distinct eigenvalues can 

always be diagonalised. 

Proof 

(i) Suppose that 𝑠1, 𝑠2 & 𝑠3 are in fact coplanar, so that 

𝑠3 = 𝑎𝑠1 + b𝑠2  , where 𝑎 & 𝑏 are not both zero    (1) 

(by definition, eigenvectors are non-zero) 

Then M𝑠3 = 𝑎𝑀𝑠1 + bM𝑠2  and hence  𝜆3𝑠3 = 𝑎𝜆1𝑠1 + b𝜆2𝑠2   

Also, from (1), 𝜆3𝑠3 = 𝑎𝜆3𝑠1 + b𝜆3𝑠2 , 

so that   𝑎𝜆1𝑠1 + b𝜆2𝑠2 = 𝑎𝜆3𝑠1 + b𝜆3𝑠2 

and hence  𝑎(𝜆1 − 𝜆3)𝑠1 = b(𝜆3 − 𝜆2)𝑠2 

But  𝜆1 − 𝜆3  & 𝜆3 − 𝜆2 are non-zero, and 𝑠1 & 𝑠3 are not parallel 

(as otherwise they would have the same eigenvalues), so that it 

must be the case that 𝑎 = 𝑏, which contradicts (1). 

Thus  𝑠1, 𝑠2 & 𝑠3 cannot be coplanar. 
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(ii) From (i), as 𝑠1, 𝑠2 & 𝑠3 are not coplanar, the volume of the 

parallelepiped with sides 𝑠1, 𝑠2 & 𝑠3 is non-zero; ie 

𝑠1. (𝑠2  ×  𝑠3) ≠ 0, so that  |𝑠1, 𝑠2 , 𝑠3| ≠ 0, which means that the 

matrix  (𝑠1, 𝑠2 , 𝑠3) has an inverse, and hence 𝑀 can be 

diagonalised. 

[Note that if there are repeated eigenvalues, then at least two of 

the columns of (𝑠1, 𝑠2 , 𝑠3) will be identical, making 

|𝑠1, 𝑠2 , 𝑠3| = 0.]  

 

(7) Matrices 𝐴 & 𝐵 are said to be 'similar' if 𝐵 = 𝑃𝐴𝑃−1 for some 

matrix 𝑃 (𝐴 need not be diagonal). 

Prove that similar matrices have the same characteristic equation, 

and hence the same eigenvalues. 

Solution 

Let the characteristic equation of 𝐴 be ∑ 𝑎𝑟𝜆𝑟 = 0, so that 
∑ 𝑎𝑟𝐴𝑟 = 0. Then 𝑃(∑ 𝑎𝑟𝐴𝑟) = 0, so that  ∑ 𝑃𝑎𝑟𝐴𝑟 = 0.   

Then  (∑ 𝑃𝑎𝑟𝐴𝑟)𝑃−1 = 0, and hence  ∑ 𝑃𝑎𝑟𝐴𝑟𝑃−1 = 0, so that  

∑ 𝑎𝑟𝑃𝐴𝑟𝑃−1 = 0.  

As 𝐵𝑟 = (𝑃𝐴𝑃−1)(𝑃𝐴𝑃−1) … = 𝑃𝐴𝑟𝑃−1, it follows that 
∑ 𝑎𝑟𝐵𝑟 = 0, and thus 𝐵 has the same characteristic equation as 𝐴. 

 

(8) Symmetric matrices are always diagonalisable. Prove that this 

is the case for 2 × 2 symmetric matrices. 

Solution 

Consider 𝑀 = (
𝑎 𝑏
𝑏 𝑐

) , with characteristic equation 

|
𝑎 − 𝜆 𝑏

𝑏 𝑐 − 𝜆
| = 0  
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⇔ (𝑎 − 𝜆)(𝑐 − 𝜆) − 𝑏2 = 0  

⇔ 𝜆2 − (𝑎 + 𝑐)𝜆 + 𝑎𝑐 − 𝑏2 = 0  

The discriminant is  (𝑎 + 𝑐)2 − 4(𝑎𝑐 − 𝑏2) = (𝑎 − 𝑐)2 + 4𝑏2, 

which is always positive, assuming that 𝑎, 𝑏 & 𝑐 are not all zero. 

So there will be 2 distinct eigenvalues, and hence 2 linearly 

independent eigenvectors. Thus 𝑀 is diagonalisable. 

 

(9) Prove that if 𝑀 is orthogonally diagonalisable, then 𝑀 is 

symmetric. 

Solution 

If 𝑀 is orthogonally diagonalisable, then 𝑀 = 𝑃𝐷𝑃−1, where 

𝑃−1 = 𝑃𝑇 . 

Then 𝑀𝑇 = (𝑃𝐷𝑃−1)𝑇 = (𝑃−1)𝑇𝐷𝑇𝑃𝑇 = 𝑃𝐷𝑃−1 = 𝑀, 

so that 𝑀 is symmetric. 

 

(10) Find the square roots of the matrix (
2 1
2 3

) in (2). 

Solution 

From (2), (
2 1
2 3

) = (
1 1

−1 2
) (

1 0
0 4

) (
1 1

−1 2
)

−1

 

By comparison with the method of finding (
2 1
2 3

)
3

, we would 

expect the answer to be  ± (
1 1

−1 2
) (

1 0
0 2

) (
1 1

−1 2
)

−1

. 

To prove this though,  

let  𝑀 = (
2 1
2 3

) ; 𝑃 = (
1 1

−1 2
)  & 𝐷 = (

1 0
0 4

), 

so that 𝑀 = 𝑃𝐷𝑃−1. 
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Then let  𝑀 = 𝐴2  and  𝐷 = 𝐸2 

[we want to show that 𝐴 = ±𝑃𝐸𝑃−1] 

So  𝐴2 = 𝑃𝐸2𝑃−1   (1) 

Then 𝐴 = 𝑃𝐸𝑃−1 is a solution of (1), since 

(𝑃𝐸𝑃−1)2 = 𝑃𝐸𝑃−1𝑃𝐸𝑃−1 = 𝑃𝐸2𝑃−1 , 

and 𝐴 = −𝑃𝐸𝑃−1 is clearly also a solution of (1). 

Thus we have found the two squares roots of 𝑀 [though we have 

admittedly made the assumption that matrices only have two 

squares roots.] 

So 𝐴 = ± (
1 1

−1 2
) (

1 0
0 2

) (
1 1

−1 2
)

−1

 

= ± (
1 1

−1 2
) (

1 0
0 2

)
1

3
(

2 −1
1 1

)  

= ±
1

3
(

1 1
−1 2

) (
2 −1
2 2

)  

= ±
1

3
(

4 1
2 5

)  

Check: 
1

9
(

4 1
2 5

)
2

=
1

9
(

4 1
2 5

) (
4 1
2 5

) =
1

9
(

18 9
18 27

) = (
2 1
2 3

) 

 

(11) Show that 2 × 2 matrices representing rotations are not 

diagonalisable. 

Solution 

A matrix representing a rotation can be expressed in the form 

(
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

)  

The characteristic equation for this matrix is 

|
𝑐𝑜𝑠𝜃 − 𝜆 −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 − 𝜆
| = 0  
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⇔ (𝑐𝑜𝑠𝜃 − 𝜆)2 + 𝑠𝑖𝑛2𝜃 = 0  

⇔ 𝜆2 − 2𝑐𝑜𝑠𝜃. 𝜆 + 1 = 0  

The discriminant is  4𝑐𝑜𝑠2𝜃 − 4, which is negative for positive 𝜃. 

Thus there are no eigenvalues, and hence the matrix cannot be 

diagonalised. 

 

(12) For the matrix 𝑀 = (
𝑎 𝑐
𝑏 𝑑

) with eigenvalues 𝜆1 & 𝜆2, prove 

that  𝜆1 +  𝜆2 = 𝑎 + 𝑑 , and also that  𝜆1𝜆2 = |𝑀| 

[this can be extended to 3 × 3 matrices] 

Solution 

The characteristic equation is |
𝑎 − 𝜆 𝑐

𝑏 𝑑 − 𝜆
| = 0, so that  

(𝑎 − 𝜆)(𝑑 − 𝜆) − 𝑏𝑐 = 0  and 𝜆2 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐 = 0 

and the roots 𝜆1& 𝜆2 satisfy 𝜆1 +  𝜆2 = 𝑎 + 𝑑 and  𝜆1𝜆2 = 𝑎𝑑 − 𝑏𝑐, 

as required. 

 

(13) The populations of sparrows (𝑥) and sparrowhawks (𝑦) in a 
particular area satisfy the following differential equations: 
 
𝑑𝑥

𝑑𝑡
= 0.1𝑥 − 2𝑦   and  

𝑑𝑦

𝑑𝑡
= 0.1𝑥 + 𝑦  

 
(where time is measured in years), 
 
and initially there are 50 sparrows and 4 sparrowhawks. 
 

The equations can be written as  (

𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

) = (
0.1 −2
0.1 1

) (
𝑥
𝑦)    (*) 
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(i) Express  (
0.1 −2
0.1 1

) in the form 𝑃𝐷𝑃−1, where 𝐷 is a diagonal 

matrix. 
 

(ii) Show that (*) can be rewritten as  as  (

𝑑𝑢

𝑑𝑡
𝑑𝑣

𝑑𝑡

) = 𝐷 (
𝑢
𝑣

)  

(iii) Show that 𝑢 = 𝐴𝑒0.6𝑡  and 𝑣 = 𝐵𝑒0.5𝑡 , where 𝐴 and 𝐵 are 
arbitrary constants, and hence solve the original differential 
equations. 
 
(iv) What happens to the two populations? 

Solution 

(i) The columns of  𝑃 will be the eigenvectors of the matrix, and 
the non-zero elements of 𝐷 will be the eigenvalues. 
 

The eigenvalues satisfy  (
0.1 −2
0.1 1

) (
𝑥
𝑦) = 𝜆 (

𝑥
𝑦) 

 
and the characteristic equation is  (0.1 − 𝜆)(1 − 𝜆) − 0.1(−2) =
0, 
 
so that 𝜆2 − 1.1𝜆 + 0.3 = 0 
 
⇒ (𝜆 − 0.6)(𝜆 − 0.5) = 0  
 
⇒ 𝜆 = 0.6  𝑜𝑟  0.5  
 
When 𝜆 = 0.6,   
 

(
0.1 −2
0.1 1

) (
𝑥
𝑦) = 0.6 (

𝑥
𝑦) ⇒ 0.1𝑥 − 2𝑦 = 0.6𝑥 ⇒ 𝑦 = −0.25𝑥  

 
When 𝜆 = 0.5,   
 

(
0.1 −2
0.1 1

) (
𝑥
𝑦) = 0.5 (

𝑥
𝑦) ⇒ 0.1𝑥 − 2𝑦 = 0.5𝑥 ⇒ 𝑦 = −0.2𝑥  
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So  𝑃 = (
4 5

−1 −1
)  and  𝐷 = (

0.6 0
0 0.5

) 

 

Then 𝑃−1 =
1

1
(

−1 −5
1 4

) 

 

and  (
0.1 −2
0.1 1

) = (
4 5

−1 −1
) (

0.6 0
0 0.5

) (
−1 −5
1 4

)  

 
 

(ii) (

𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

) = 𝑃𝐷𝑃−1 (
𝑥
𝑦) ⇒ 𝑃−1 (

𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

) = 𝐷𝑃−1 (
𝑥
𝑦)    (**) 

 

Let   (
𝑢
𝑣

) = 𝑃−1 (
𝑥
𝑦) = (

−1 −5
1 4

) (
𝑥
𝑦) = (

−𝑥 − 5𝑦
𝑥 + 4𝑦

) 

 

Then  (

𝑑𝑢

𝑑𝑡
𝑑𝑣

𝑑𝑡

) = (
−

𝑑𝑥

𝑑𝑡
− 5

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡
+ 4

𝑑𝑦

𝑑𝑡

) = (
−1 −5
1 4

) (

𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

) = 𝑃−1 (

𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

) 

 

so that (

𝑑𝑢

𝑑𝑡
𝑑𝑣

𝑑𝑡

) = 𝐷 (
𝑢
𝑣

), from (**) 

 

(iii)  (

𝑑𝑢

𝑑𝑡
𝑑𝑣

𝑑𝑡

) = (
0.6 0
0 0.5

) (
𝑢
𝑣

) ⇒
𝑑𝑢

𝑑𝑡
= 0.6𝑢   & 

𝑑𝑣

𝑑𝑡
= 0.5𝑣     

 

⇒ ∫
1

𝑢
𝑑𝑢 = 0.6 ∫ 𝑑𝑡 ⇒ 𝑙𝑛|𝑢| = 0.6𝑡 + 𝐶  

 
⇒ 𝑢 = 𝐴𝑒0.6𝑡 , and similarly  𝑣 = 𝐵𝑒0.5𝑡 
 

(
𝑢
𝑣

) = 𝑃−1 (
𝑥
𝑦) ⇒ (

𝑥
𝑦) = 𝑃 (

𝑢
𝑣

) = (
4 5

−1 −1
) (𝐴𝑒0.6𝑡

𝐵𝑒0.5𝑡)  
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so that  𝑥 = 4𝐴𝑒0.6𝑡 + 5𝐵𝑒0.5𝑡  and   𝑦 = −𝐴𝑒0.6𝑡 − 𝐵𝑒0.5𝑡 
 
Applying the initial conditions, 
 
50 = 4𝐴 + 5𝐵  and  4 = −𝐴 − 𝐵  
 
⇒ 50 = 4𝐴 + 5(−𝐴 − 4) ⇒ 70 = −𝐴 and  𝐵 = 66 
 
So  𝑥 = 330𝑒0.5𝑡 − 280𝑒0.6𝑡  and   𝑦 = 70𝑒0.6𝑡 − 66𝑒0.5𝑡 
 
(iv) The sparrows become extinct when 𝑥 = 0 
 

 ⇒ 330𝑒0.5𝑡 = 280𝑒0.6𝑡 ⇒
33

28
= 𝑒0.1𝑡 

 

⇒ 𝑡 = 10𝑙𝑛 (
33

28
) = 1.643 years; ie by the time 20 months have 

elapsed 
 

(𝑦 = 0 ⇒ 70𝑒0.6𝑡 = 66𝑒0.5𝑡 ⇒
66

70
= 𝑒0.1𝑡 ⇒ 𝑡 = 10𝑙𝑛 (

66

70
) < 0, 

which can be rejected) 
 

 


