Matrices - Q9: Eigenvectors [Problem/H](2/6/21)

(i) If $\underline{s}_{1}, \underline{s}_{2} \& \underline{s}_{3}$ are eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{2} \& \lambda_{3}$ of a 3×3 matrix M, prove that $\underline{s}_{1}, \underline{s}_{2} \& \underline{s}_{3}$ cannot be coplanar.
(ii) Deduce that a 3×3 matrix with distinct eigenvalues can always be diagonalised.
(i) If $\underline{s}_{1}, \underline{s}_{2} \& \underline{s}_{3}$ are eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{2} \& \lambda_{3}$ of a 3×3 matrix M, prove that $\underline{s}_{1}, \underline{s}_{2} \& \underline{s}_{3}$ cannot be coplanar.
(ii) Deduce that a 3×3 matrix with distinct eigenvalues can always be diagonalised.

Solution

(i) Suppose that $\underline{s}_{1}, \underline{s}_{2} \& \underline{s}_{3}$ are in fact coplanar, so that
$\underline{s}_{3}=a \underline{s}_{1}+b \underline{s}_{2}$, where $a \& b$ are not both zero
(by definition, eigenvectors are non-zero)
Then $\underline{\mathrm{s}}_{3}=a M \underline{s}_{1}+\mathrm{bM} \underline{s}_{2}$ and hence $\lambda_{3} \underline{S}_{3}=a \lambda_{1} \underline{s}_{1}+\mathrm{b} \lambda_{2} \underline{s}_{2}$
Also, from (1), $\lambda_{3} \underline{S}_{3}=a \lambda_{3} \underline{S}_{1}+\mathrm{b} \lambda_{3} \underline{S}_{2}$,
so that $a \lambda_{1} \underline{S}_{1}+b \lambda_{2} \underline{S}_{2}=a \lambda_{3} \underline{S}_{1}+\mathrm{b} \lambda_{3} \underline{S}_{2}$
and hence $a\left(\lambda_{1}-\lambda_{3}\right) \underline{s}_{1}=\mathrm{b}\left(\lambda_{3}-\lambda_{2}\right) \underline{s}_{2}$
But $\lambda_{1}-\lambda_{3} \& \lambda_{3}-\lambda_{2}$ are non-zero, and $\underline{s}_{1} \& \underline{s}_{3}$ are not parallel (as otherwise they would have the same eigenvalues), so that it must be the case that $a=b$, which contradicts (1).

Thus $\underline{s}_{1}, \underline{s}_{2} \& \underline{s}_{3}$ cannot be coplanar.
(ii) From (i), as $\underline{s}_{1}, \underline{s}_{2} \& \underline{s}_{3}$ are not coplanar, the volume of the parallelepiped with sides $\underline{s}_{1}, \underline{S}_{2} \& \underline{s}_{3}$ is non-zero; ie
$\underline{s}_{1} \cdot\left(\underline{s}_{2} \times \underline{s}_{3}\right) \neq 0$, so that $\left|\underline{s}_{1}, \underline{s}_{2}, \underline{s}_{3}\right| \neq 0$, which means that the matrix $\left(\underline{s}_{1}, \underline{s}_{2}, \underline{s}_{3}\right)$ has an inverse, and hence M can be diagonalised.
[Note that if there are repeated eigenvalues, then at least two of the columns of $\left(\underline{s}_{1}, \underline{s}_{2}, \underline{s}_{3}\right)$ will be identical, making
$\left|\underline{s}_{1}, \underline{s}_{2}, \underline{s}_{3}\right|=0$.]

