Matrices - Q8: Eigenvectors [Problem/H](2/6/21)

For a 3×3 matrix M, show that
(i) the product of the eigenvalues of M equals $\operatorname{det} M$
(ii) the sum of the eigenvalues equals the sum of the elements on the leading diagonal of M (from top left to bottom right; this sum is called the trace of M, or $\operatorname{tr} M$)

For a 3×3 matrix M, show that
(i) the product of the eigenvalues of M equals $\operatorname{det} M$
(ii) the sum of the eigenvalues equals the sum of the elements on the leading diagonal of M (from top left to bottom right; this sum is called the trace of M, or $\operatorname{tr} M$)

Solution

(i) The eigenvalues of M are the roots of $f(\lambda)=\operatorname{det}(M-\lambda I)=0$, considered as a cubic equation in λ.
$f(\lambda)$ can be written as $g(\lambda)=-\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{1}\right)$ (as the determinant will contain the term $-\lambda^{3}$)

Then we note that $f(0)=\operatorname{det} M \& g(0)=\lambda_{1} \lambda_{2} \lambda_{3}$, so that the constant term of $f(\lambda)=g(\lambda)$ is $\operatorname{det} M=\lambda_{1} \lambda_{2} \lambda_{3}$.
(ii) $\lambda_{1}+\lambda_{2}+\lambda_{3}=-\frac{b}{a}$, where $a \& b$ are the coefficients of $\lambda^{3} \& \lambda^{2}$ in $\operatorname{det}(M-\lambda I)=\left|\begin{array}{ccc}c-\lambda & f & i \\ d & g-\lambda & j \\ e & h & k-\lambda\end{array}\right|$
The only terms involving λ^{2} are contained in

$$
(c-\lambda)(g-\lambda)(k-\lambda), \text { and } b=c+g+k
$$

Then, as $a=-1, \lambda_{1}+\lambda_{2}+\lambda_{3}=c+g+k$; ie $t r M$.

