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Matrices – Q7: Eigenvectors [Problem/H](2/6/21) 
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(i) Show that the eigenvalues of the matrix (
2 −1 1
1 0 1
1 −1 2

) are 1 

(repeated) and 2 (for example, by using row or column 

operations), and investigate the geometrical significance of the 

eigenvectors. 

(ii) Construct another matrix with the same eigenvalues, and 

hence establish that the geometrical result in (i) does not hold in 

general. 
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(i) Show that the eigenvalues of the matrix (
2 −1 1
1 0 1
1 −1 2

) are 1 

(repeated) and 2 (for example, by using row or column 

operations), and investigate the geometrical significance of the 

eigenvectors. 

(ii) Construct another matrix with the same eigenvalues, and 

hence establish that the geometrical result in (i) does not hold in 

general. 

 

Solution 

The characteristic equation for the matrix is 

|
2 − 𝜆 −1 1

1 −𝜆 1
1 −1 2 − 𝜆

| = 0 , 

As the eigenvalues have been given, we could (if only for practice 

at manipulating determinants) look for row or column operations 

that produce the required factorisation. 

For example, replacing column 2 with column 2 + column 3: 

|
2 − 𝜆 0 1

1 1 − 𝜆 1
1 1 − 𝜆 2 − 𝜆

| = 0 , 

so that (1 − 𝜆) |
2 − 𝜆 0 1

1 1 1
1 1 2 − 𝜆

| = 0 

[Note that, if two 0s can be created in a row or column, then a 

factor can be taken out; whilst the presence of one 0 means that 

any common factor of the other two elements in the row or 

column can be taken out. For example, if two rows (or columns) 

of the matrix share two corresponding elements, then it will be 

possible to create two 0s, by subtracting one row from the other. ] 



4 
 

As the 2nd and 3rd rows share two corresponding elements, we 

can replace row 3 with row 3 − row 2, to give: 

 (1 − 𝜆) |
2 − 𝜆 0 1

1 1 1
0 0 1 − 𝜆

| = 0 , 

and so  (1 − 𝜆)(1 − 𝜆)(2 − 𝜆), expanding by the 3rd row. 

Thus the eigenvalues are 1 (repeated) and 2. 

To find the eigenvectors: 

𝜆 = 1 ⇒ (
1 −1 1
1 −1 1
1 −1 1

) (
𝑥
𝑦
𝑧

) = (
0
0
0

)  

so that we have the plane  𝑥 − 𝑦 + 𝑧 = 0 

Thus any point in this plane will be mapped to itself (as the 

eigenvalue is 1); ie it is a plane of invariant points. 

The plane can also be presented in the form  𝑟 = 𝛼𝑎 + 𝛽𝑏 , where  

𝑎 & 𝑏 are any two independent vectors in the plane. 

For example,  𝑟 = 𝛼 (
1
1
0

) + 𝛽 (
0
1
1

) 

Thus  (
1
1
0

) & (
0
1
1

) are two eigenvectors of the transformation 

(though they are not unique). 

𝜆 = 2 ⇒ (
0 −1 1
1 −2 1
1 −1 0

) (
𝑥
𝑦
𝑧

) = (
0
0
0

) , 

so that −𝑦 + 𝑧 = 0, 𝑥 − 2𝑦 + 𝑧 = 0  &  𝑥 − 𝑦 = 0 

Then let 𝑥 = 𝜇 (for example), so that 𝑦 = 𝜇 & 𝑧 = 𝜇, 
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and we have the eigenvector  (
1
1
1

) , which just represents the 

usual invariant line through the Origin. 

 

(ii) We want the characteristic equation to be 

(𝜆 − 1)2(𝜆 − 2) = 0  

leading to  𝜆3 − 4𝜆2 + 5𝜆 − 2 = 0  (1) 

We could then set up a suitably general characteristic equation 

such as  |
𝑎 − 𝜆 0 𝑐

1 −𝜆 0
1 𝑏 −𝜆

| = 0  (2)  

and equate coefficients with (1). 

Thus (2) becomes (𝑎 − 𝜆)𝜆2 + 𝑐(𝑏 + 𝜆) = 0  (3) 

[A bit of experimentation is necessary in arriving at the 

determinant in (2), in order that (3) is sufficiently general.] 

Then, equating the coefficients in (1) & (3) gives: 

𝑎 = 4, 𝑐 = −5 & 𝑏 = −
2

5
  

so that (2) becomes  |

4 − 𝜆 0 −5
1 −𝜆 0

1 −
2

5
−𝜆

| = 0   

[It is probably worth checking that this produces the required 

eigenvalues of 1 and 2.] 

The eigenvectors corresponding to 𝜆 = 1 are then found from: 

(

3 0 −5
1 −1 0

1 −
2

5
−1

) (
𝑥
𝑦
𝑧

) = (
0
0
0

)  
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so that  3𝑥 − 5𝑧 = 0, 𝑥 − 𝑦 = 0  &  𝑥 −
2𝑦

5
− 𝑧 = 0 

Then let 𝑥 = 𝜇,  so that 𝑦 = 𝜇 & 𝑧 =
3𝜇

5
 

Thus an eigenvector is (
5
5
3

) , and we don't have the plane that was 

found in (i); only a line of invariant points (through the Origin). 

[The (advanced) theory behind this is based on the following 

theorem: "The geometric multiplicity of an eigenvalue does not 

exceed its algebraic multiplicity." The algebraic multiplicity is the 

number of times that the eigenvalue appears as a root of the 

characteristic equation. The geometric multiplicity is the 

dimension of the line or plane relating to the eigenvalue: so an 

invariant line means a geometric multiplicity of 1, whilst an 

invariant plane means a geometric multiplicity of 2. So, by this 

theorem, there have to be repeated eigenvalues in order for there 

to be an invariant plane, but if there are repeated eigenvalues it 

doesn't follow that there will be an invariant plane.] 

  

 


