Matrices - Q6: Eigenvectors [Problem/H](2/6/21)

Given that the eigenvalues of $\left(\begin{array}{ccc}3 & -1 & 1 \\ -1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right)$ are 4,4 and 1 , establish the geometrical significance of the eigenvectors.

Given that the eigenvalues of $\left(\begin{array}{ccc}3 & -1 & 1 \\ -1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right)$ are 4,4 and 1, establish the geometrical significance of the eigenvectors.

Solution

First of all, the eigenvector associated with the eigenvalue of 1 will be a line of invariant points (through the Origin) [All eigenvectors are invariant lines through the Origin, and are lines of invariant points when the eigenvalue is 1.]
[When there are repeated eigenvalues, there will either be an invariant plane or an invariant line. When there aren't repeated eigenvalues, there can only be an invariant line. See "Matrices notes".]
$\left(\begin{array}{ccc}3-4 & -1 & 1 \\ -1 & 3-4 & 1 \\ 1 & 1 & 3-4\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$,
giving $-x-y+z=0$ (3 times)
This is the equation of a plane; ie the invariant plane of the transformation (all points map to another point in the plane.)

