Matrices - Q58: Transformations (9/3/24)

Suppose that the matrix $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ represents a reflection in the line $y=m x$.
(i) By considering the image of a particular point under M, explain why $a^{2}+b^{2}=1$.
(ii) Given that a necessary and sufficient condition for a transformation to have a line of invariant points is that $\operatorname{tr}(M)=|M|+1($ where $\operatorname{tr}(M)($ the trace of $M)=a+d)$ and by considering the image of a point on the line $y=m x$ (or otherwise), show that $M=\left(\begin{array}{cc}\frac{1-m^{2}}{1+m^{2}} & \frac{2 m}{1+m^{2}} \\ \frac{2 m}{1+m^{2}} & \frac{m^{2}-1}{1+m^{2}}\end{array}\right)$

Solution

(i) $\binom{a}{b}$ is the image of $\binom{1}{0}$, and the distance of $\binom{a}{b}$ from the Origin $\left(a^{2}+b^{2}\right)$ will equal the distance of $\binom{1}{0}$ from the Origin (1); thus $a^{2}+b^{2}=1$
(ii) When any shape is reflected in the line $y=m x$, the area will be unchanged, but the order of the vertices will be reversed (so that clockwise becomes anti-clockwise). Hence $|M|=-1$.

Also, from the given result,
$a+d=|M|+1=-1+1=0$
So we can write $M=\left(\begin{array}{cc}a & \frac{1-a^{2}}{b} \\ b & -a\end{array}\right)$, where $a^{2}+b^{2}=1$.
As $\binom{1}{m}$ lies on the line of reflection,
$\left(\begin{array}{cc}a & \frac{1-a^{2}}{b} \\ b & -a\end{array}\right)\binom{1}{m}=\binom{1}{m}$,
and so $a+\left(\frac{1-a^{2}}{b}\right) m=1$, and $b-a m=m$
Thus $b=m(a+1)[$ and $a+(1-a)=1]$
Then $M=\left(\begin{array}{cc}a & \frac{1-a^{2}}{m(a+1)} \\ m(a+1) & -a\end{array}\right)$
and $a^{2}+m^{2}(a+1)^{2}=1$,
so that $m^{2}=\frac{1-a^{2}}{(1+a)^{2}}=\frac{1-a}{1+a}$;
$m^{2}+a m^{2}=1-a ;$
$a\left(m^{2}+1\right)=1-m^{2} ;$
$a=\frac{1-m^{2}}{1+m^{2}}$
Then $b=m(a+1)=\frac{m\left(1-m^{2}\right)+m\left(1+m^{2}\right)}{1+m^{2}}=\frac{2 m}{1+m^{2}}$
And $c=\frac{1-a^{2}}{m(a+1)}=\frac{(1-a)}{m}=\frac{1}{m} \cdot \frac{\left(1+m^{2}\right)-\left(1-m^{2}\right)}{1+m^{2}}=\frac{2 m}{1+m^{2}}$
So $M=\left(\begin{array}{cc}\frac{1-m^{2}}{1+m^{2}} & \frac{2 m}{1+m^{2}} \\ \frac{2 m}{1+m^{2}} & \frac{m^{2}-1}{1+m^{2}}\end{array}\right)$, as required.

