Matrices - Q57: Transformations (9/3/24)

Consider the transformation represented by the matrix $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$.
(i) Show that the transformation has at least one invariant line if and only if $[\operatorname{tr}(M)]^{2} \geq 4|M|$ (where $\operatorname{tr}(M)$ (the trace of $M)=a+d$)
(ii) Show that there will be a family of invariant lines if and only if $\operatorname{tr}(M)=|M|+1$

Solution

(i) Suppose that there is an invariant line $y=m x+k$.

Then $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x+k}=\binom{a x+c m x+c k}{b x+d m x+d k}$
and $b x+d m x+d k=m(a x+c m x+c k)+k$
This must apply for all x, so:
equating coefficients of $x: b+d m=m a+c m^{2}$,
so that $\mathrm{cm}^{2}+m(a-d)-b=0$
And equating constant terms gives $d k=m c k+k$,
so that $k(d-m c-1)=0$
Then, in order for there to be an m that satisfies (1),
the discriminant of (1) must be non-negative (and vice-versa);
ie $(a-d)^{2}+4 c b \geq 0$
$\Leftrightarrow(a+d)^{2}-4 a d+4 c b \geq 0$
$\Leftrightarrow[\operatorname{tr}(M)]^{2} \geq 4|M|$, as required.
(ii) From (2), if the condition in (i) is satisfied, there will only be one invariant line (with $k=0$) unless $d-m c-1=0$; ie $m=\frac{d-1}{c}$

Then, from (1): $c m^{2}+m(a-d)-b=0$,
so that $(d-1)^{2}+(d-1)(a-d)-b c=0$
or $d^{2}-2 d+1+d a-d^{2}-a+d-b c=0$
or $-d+1+a d-a-b c=0$
or $\operatorname{tr}(M)=|M|+1$, as required.
Then $[\operatorname{tr}(M)]^{2}-4|M|=[|M|+1]^{2}-4|M|$
$=[|M|-1]^{2} \geq 0$,
so that the condition in (i) is satisfied.
This argument is reversible, and so there will be a family of invariant lines if and only if $\operatorname{tr}(M)=|M|+1$.

