Matrices - Simultaneous Equations

Q55 [Problem/M] (3/11/23)

Given that $a+2 b=16$ and $b-c=2$, use a matrix argument to determine that $a+b+c=14$

Solution

[Note that $(a+2 b)-(b-c)=a+b+c$,
so that $a+b+c=16-2=14]$
We need to solve the simultaneous equations
$a+2 b=16$
$b-c=2$
$a+b+c=k$,
and establish k in the process (assuming that a unique value of k exists).

These equations can be written as $\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}16 \\ 2 \\ k\end{array}\right)$,
and we see that $\left|\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1\end{array}\right|=1(2)-2(1)=0$ (expanding by the $1^{\text {st }}$ row).

Clearly there are an infinite number of solutions to the first two equations (assuming that there are no restrictions on $a, b \& c$), so that the 3 equations must have a solution for at least one value of k.

For this to be the case, we require $\left|\begin{array}{ccc}1 & 2 & 16 \\ 0 & 1 & 2 \\ 1 & 1 & k\end{array}\right|=0$
[This 3d result corresponds to the requirement for the following 2d equations to be consistent when $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|=0$:
$a x+c y=e$
$b x+d y=f$
As $\frac{a}{b}=\frac{c}{d}$, we require $\frac{e}{f}=\frac{a}{b}$, or $a f=b e$; ie $\left.\left|\begin{array}{ll}a & e \\ b & f\end{array}\right|=0\right]$

Expanding by the $3^{\text {rd }}$ row gives:
$1(-12)-1(2)+k(1)=0$, so that $k=14$
[Note: As we have established that there is a solution to the equations (with $k=14$), the fact that $\left|\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1\end{array}\right|=0$ means that there will be an infinite number of solutions. In fact, any value can be chosen for a (or b or c), and the total $a+b+c$ always equals 14.]

