Matrices – Invariant Points & Lines

Q53 (9/3/24)

The 2 \times 2 matrix *M* represents a transformation that maps all points to the same line. In addition, points on this line are invariant points under the transformation. What conditions must apply to *M*?

Solution

As all points are mapped to the same line, |M| = 0.

Let
$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
, so that $|M| = ad - bc = 0$.
Let $\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}$
Then $ap + cq = u$ & $bp + dq = v$,
and $as \frac{b}{a} = \frac{d}{c}$ (from $ad - bc = 0$), it follows that $\frac{v}{u} = \frac{b}{a}$ also,
and the equation of the line to which all points map is $y = \frac{b}{a}$. x
It is given that all points on this line are invariant:
hence $\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} p \\ \frac{b}{a} \cdot p \end{pmatrix} = \begin{pmatrix} p \\ \frac{b}{a} \cdot p \end{pmatrix}$,
so that $ap + c \cdot \frac{b}{a} \cdot p = p$, or $a + c \cdot \frac{d}{c} = 1$
(as this must hold for all p)
ie $a + d$ (the trace of M) = 1
[The other equation also gives $bp + d \cdot \frac{b}{a} \cdot p = \frac{b}{a} \cdot p \Rightarrow a + d = 1$]

Thus the required conditions are that |M| = 0 and tr(M) = 1.