Matrices - Invariant Points \& Lines

Q53 (9/3/24)

The 2×2 matrix M represents a transformation that maps all points to the same line. In addition, points on this line are invariant points under the transformation. What conditions must apply to M ?

Solution

As all points are mapped to the same line, $|M|=0$.
Let $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, so that $|M|=a d-b c=0$.
Let $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{p}{q}=\binom{u}{v}$
Then $a p+c q=u \& b p+d q=v$,
and as $\frac{b}{a}=\frac{d}{c}$ (from $a d-b c=0$), it follows that $\frac{v}{u}=\frac{b}{a}$ also,
and the equation of the line to which all points map is $y=\frac{b}{a} \cdot x$
It is given that all points on this line are invariant:
hence $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{p}{\frac{b}{a} \cdot p}=\binom{p}{\frac{b}{a} \cdot p}$,
so that $a p+c \cdot \frac{b}{a} \cdot p=p$, or $a+c \cdot \frac{d}{c}=1$
(as this must hold for all p)
ie $a+d$ (the trace of $M)=1$
[The other equation also gives $b p+d \cdot \frac{b}{a} \cdot p=\frac{b}{a} \cdot p \Rightarrow a+d=1$]

Thus the required conditions are that $|M|=0$ and $\operatorname{tr}(M)=1$.

