Matrices - Q52: Invariant Points \& Lines (9/3/24)

For the transformation $\left(\begin{array}{ll}3 & 1 \\ 2 & k\end{array}\right)$:
(i) For what value of k is there a line of invariant points, and find this line.
(ii) Given now that $k=4$, find any invariant lines of the transformation.

Solution

(i) Suppose that $\left(\begin{array}{ll}3 & 1 \\ 2 & k\end{array}\right)\binom{p}{q}=\binom{p}{q}$

Then $3 p+q=p$ and $2 p+k q=q$
so that $q=-2 p \& 2 p=q(1-k)$
Hence $\frac{q}{p}=-2 \& \frac{q}{p}=\frac{2}{1-k}$
so that $-2=\frac{2}{1-k} \Rightarrow 1-k=-1 \&$ hence $k=2$
As $q=-2 p$, the invariant points lie on the line $y=-2 x$
[Check: $\left(\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right)\binom{1}{-2}=\binom{1}{-2}$]
(ii) Suppose that there is an invariant line $y=m x+c$.

Considering a point on this line:
$\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)\binom{x}{m x+c}=\binom{3 x+m x+c}{2 x+4(m x+c)}$
And, for the line to be invariant,
$2 x+4(m x+c)=m(3 x+m x+c)+c$ for all x
Equating coefficients of $x: 2+4 m=3 m+m^{2}$;
ie $m^{2}-m-2=0$
so that $(m-2)(m+1)=0$, and hence $m=2$ or -1
Equating the constant term: $4 c=m c+c$;
ie $c=0$ or $m=3$
Combining these two conditions, $m=2$ or -1 , and $c=0$

So the invariant lines are $y=2 x$ and $y=-x$

