Matrices - Q50: Transformations [Practice/M] (8/6/21)
(i) Show that the transformation represented by the matrix $\left(\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right)$ (with determinant zero) maps all points to a particular line.
(ii) Find the line whose points all map to the point $(3,1)$.
(iii) Without doing any calculations, what can be said about the line whose points all map to the point $(6,2)$ ?
(iv) Write down the line whose points all map to the Origin.
(i) Show that the transformation represented by the matrix $\left(\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right)$ (with determinant zero) maps all points to a particular line.
(ii) Find the line whose points all map to the point $(3,1)$.
(iii) Without doing any calculations, what can be said about the line whose points all map to the point $(6,2)$ ?
(iv) Write down the line whose points all map to the Origin.

## Solution

(i) $\left(\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right)\binom{x}{y}=\binom{3 x+6 y}{x+2 y}=\binom{3(x+2 y)}{x+2 y}$

So all points map to the line $y=\frac{1}{3} x$
(ii) $\left(\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right)\binom{x}{y}=\binom{3}{1} \Rightarrow x+2 y=1$
ie the required line is $y=-\frac{1}{2} x+\frac{1}{2}$
(iii) The line will have gradient $-\frac{1}{2}$ (lines mapping to different points cannot intersect (and therefore must be parallel) otherwise the intersection point would map to two points).
[Note: The line doesn't contain the point (6,2).]
(iv) $y=-\frac{1}{2} x$ (It must contain the Origin, as this always maps to itself.)

