Matrices - Q5: Eigenvectors [Problem/M](2/6/21)

If matrices $M \& N$ (both square, of the same order) share an eigenvector, what can be said about the eigenvectors and eigenvalues of $M N$ and $N M$?

If matrices $M \& N$ (both square, of the same order) share an eigenvector, what can be said about the eigenvectors and eigenvalues of $M N$ and $N M$?

Solution

Let $M \underline{x}=\lambda \underline{x}$ and $N \underline{x}=\mu \underline{x}$
Then $(M N) \underline{x}=M(N \underline{x})=M(\mu \underline{x})=\mu(M \underline{x})=\mu \lambda \underline{x}$
Thus $M N$, and similarly $N M$, also have this same eigenvector, and the associated eigenvalue is the product of the corresponding eigenvalues for $M \& N$.

