Matrices - Q49: Invariant Points \& Lines [Practice/M] (8/6/21)

Find the invariant points and lines for the transformation represented by the matrix $\left(\begin{array}{cc}5 & 4 \\ -4 & -3\end{array}\right)$.

Find the invariant points and lines for the transformation represented by the matrix $\left(\begin{array}{cc}5 & 4 \\ -4 & -3\end{array}\right)$.

Solution

Invariant points satisfy $\left(\begin{array}{cc}5 & 4 \\ -4 & -3\end{array}\right)\binom{x}{y}=\binom{x}{y}$
$\Rightarrow 5 x+4 y=x,-4 x-3 y=y \Rightarrow y=-x$
This is a line of invariant points.
For points on the line $y=m x+c$,
$\left(\begin{array}{cc}5 & 4 \\ -4 & -3\end{array}\right)\binom{x}{m x+c}=\binom{5 x+4 m x+4 c}{-4 x-3 m x-3 c}$
For this to be an invariant line,

$$
-4 x-3 m x-3 c=m(5 x+4 m x+4 c)+c \text { for all } x
$$

Equating coefficients of $x,-4-3 m=5 m+4 m^{2}$,
so that $4 m^{2}+8 m+4=0$, or $m^{2}+2 m+1=0$;
ie $(m+1)^{2}=0$, so that $m=-1$
Equating the constant terms, $-3 c=4 m c+c$
$\Rightarrow c(4 m+4)=0$
$\Rightarrow c=0$ or $m=-1$
So the overall condition is: $m=-1$ and c can take any value, and the invariant lines are of the form $y=c-x$ (including the line of invariant points $y=-x$).
[Note: $\left(\begin{array}{cc}5 & 4 \\ -4 & -3\end{array}\right)$ represents a shear, as its determinant is 1 and the sum of the elements on the leading diagonal is 2 . It follows that the invariant lines will all be parallel to the line of invariant points.]

