Matrices - Q48: Eigenvectors [Practice/M] (8/6/21)

Consider the transformation represented by $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
(i) What type of transformation is this?
(ii) Use eigenvectors to find the invariant lines through the Origin.
(iii) What can be said about the line $y=0$?
(iv) What can be said about the line $y=c$? , where $c \neq 0$

Consider the transformation represented by $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
(i) What type of transformation is this?
(ii) Use eigenvectors to find the invariant lines through the Origin.
(iii) What can be said about the line $y=0$?
(iv) What can be said about the line $y=c$?, where $c \neq 0$

Solution

(i) A shear in the x-direction [as $\binom{1}{0}$ is unchanged and $\binom{0}{1}$ moves parallel to the x-axis]; the image of a point not on the x-axis would also need to be specified, in order to define the shear fully.
(ii)\&(iii) $\left|\begin{array}{cc}1-\lambda & 2 \\ 0 & 1-\lambda\end{array}\right|=0 \Rightarrow(1-\lambda)^{2}=0 \Rightarrow \lambda=1$

To find the associated eigenvector: $\left(\begin{array}{cc}1-1 & 2 \\ 0 & 1-1\end{array}\right)\binom{x}{y}=\binom{0}{0}$, so that $2 y=0$; ie the eigenvector is $\binom{1}{0}$, which means that $y=0$ is an invariant line, and also a line of invariant points (as $\lambda=1$)
(iv) As the transformation is a shear, lines parallel to the line of invariant points will be invariant lines.

Note: General invariant lines can be obtained by finding solutions to $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\binom{x}{m x+c}=\binom{x^{\prime}}{m x^{\prime}+c}$

