Matrices - Q47: Eigenvectors [Practice/M] (8/6/21)

For a reflection in the line $y=x$:
(i) Find the transformation matrix.
(ii) Use eigenvectors to find the invariant lines through the Origin.
(iii) By drawing a diagram, are there any invariant lines that don't pass through the Origin?
(iv) Are there any lines of invariant points?

For a reflection in the line $y=x$:
(i) Find the transformation matrix.
(ii) Use eigenvectors to find the invariant lines through the Origin.
(iii) By drawing a diagram, are there any invariant lines that don't pass through the Origin?
(iv) Are there any lines of invariant points?

Solution

(i) $\binom{1}{0} \rightarrow\binom{0}{1} \&\binom{0}{1} \rightarrow\binom{1}{0}$, so matrix is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(ii) Characteristic equation is $\left|\begin{array}{cc}0-\lambda & 1 \\ 1 & 0-\lambda\end{array}\right|=0$
$\Rightarrow \lambda^{2}-1=0 \Rightarrow \lambda= \pm 1$
[Check: trace of $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=0+0=\lambda_{1}+\lambda_{2} \&\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1=\lambda_{1} \lambda_{2}$]
For $\lambda=1$:
$\left(\begin{array}{cc}0-1 & 1 \\ 1 & 0-1\end{array}\right)\binom{x}{y}=\binom{0}{0}$
so that $-x+y=0$, giving an eigenvector of $\binom{1}{1}$
For $\lambda=-1$:
$\left(\begin{array}{cc}0+1 & 1 \\ 1 & 0+1\end{array}\right)\binom{x}{y}=\binom{0}{0}$
so that $x+y=0$, giving an eigenvector of $\binom{1}{-1}$
Thus the invariant lines through the Origin are $y=x \& y=-x$
(iii) Any line parallel to $y=-x$ is an invariant line. So any line of the form $y=-x+c$, where $c \neq 0$, is an invariant line that doesn't pass through the Origin.
(iv) Invariant points satisfy $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{x}{y}=\binom{x}{y}$ and are therefore multiples of the eigenvector with eigenvalue 1.

So $y=x$ is the (only) line of invariant points.

