Matrices - Q46: Invariant Points \& Lines [Practice/M] (8/6/21)

For the matrix $\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$, find all of the invariant lines of the associated transformation.

For the matrix $\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$, find all of the invariant lines of the associated transformation.

Solution

Suppose that $\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)\binom{x}{m x+c}=\binom{x^{\prime}}{m x^{\prime}+c}$ for all x,
Then $2 x+2 m x+2 c=x^{\prime} \& x+3 m x+3 c=m x^{\prime}+c$
and $(2+2 m) x+2 c=x^{\prime} \&(1+3 m) x+2 c=m x^{\prime}$
Multiplying the 1 st equation by m and equating the two expressions for $m x^{\prime}$ gives:
$m(2+2 m) x+2 m c=(1+3 m) x+2 c$
As this is to hold for all x, we can equate the coefficients of x, to give:
$m(2+2 m)=1+3 m \& 2 m c=2 c$
Case 1: $c=0$ (invariant lines through the Origin; ie the eigenvectors)
$2 m^{2}-m-1=0 \Rightarrow(2 m+1)(m-1)=0$,
so that $m=-\frac{1}{2} \quad \& 1$
[Check: To find the eigenvalues of the matrix, we create the characteristic equation $\left|\begin{array}{cc}2-\lambda & 2 \\ 1 & 3-\lambda\end{array}\right|=0$
$\Rightarrow(2-\lambda)(3-\lambda)-2=0$
and $\lambda^{2}-5 \lambda+4=0$, so that $\lambda_{1}=1 \& \lambda_{2}=4$
Then, to find the eigenvectors:
$\left(\begin{array}{cc}2-1 & 2 \\ 1 & 3-1\end{array}\right)\binom{x}{y}=\binom{0}{0}$,
so that $x+2 y=0$; ie one invariant line is $y=-\frac{1}{2} x$
and $\left(\begin{array}{cc}2-4 & 2 \\ 1 & 3-4\end{array}\right)\binom{x}{y}=\binom{0}{0}$,
so that $x-y=0$; ie another invariant line is $y=x$
(and these agree with the values of m above)]
Case 2: $c \neq 0$
From (1), $m=1$ (satisfying both of the equations, in agreement with Exercise (6))

Thus, the other invariant lines are those of the form $y=x+c$
[Also, from Exercise (6), we expect $m=\frac{d-1}{c}=\frac{3-1}{2}=1$]

