Matrices - Q45: Invariant Points \& Lines [H] (9/3/24)

For the transformation matrix $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, where $a, b, c \& d$ are positive, find a relationship between the trace $a+d$ and the determinant that must hold in order for the transformation to have an invariant line that doesn't pass through the Origin.

Solution

Suppose that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x+k}=\binom{x^{\prime}}{m x^{\prime}+k}$ for all x,
where $k \neq 0$
Then $a x+c m x+c k=x^{\prime} \& b x+d m x+d k=m x^{\prime}+k$
and $(a+c m) x+c k=x^{\prime} \&(b+d m) x+(d-1) k=m x^{\prime}$
Multiplying the 1st equation by m and equating the two expressions for $m x^{\prime}$ gives:
$m(a+c m) x+m c k=(b+d m) x+(d-1) k$
As this is to hold for all x, we can equate the coefficients of x, to give:

$$
\begin{equation*}
m(a+c m)=b+d m \& m c k=(d-1) k \tag{1}
\end{equation*}
$$

Thus, as $k \& c \neq 0$,
$c m^{2}+(a-d) m-b=0 \& m=\frac{d-1}{c}$,
and hence $c\left(\frac{d-1}{c}\right)^{2}+(a-d)\left(\frac{d-1}{c}\right)-b=0$,
so that $(d-1)^{2}+(a-d)(d-1)-b c=0$
and $(d-1)(d-1+a-d)-b c=0$,
giving $(d-1)(a-1)-b c=0$
and hence $a d-b c-(a+d)+1=0$
or trace $=\operatorname{det}+1$

