Matrices - Q44: Transformations [Problem/M] (7/6/21)

Show that the matrix $\left(\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)$ [representing a reflection in the line $y=\tan \theta \cdot x]$ can be written as $\left(\begin{array}{cc}\frac{1-m^{2}}{1+m^{2}} & \frac{2 m}{1+m^{2}} \\ \frac{2 m}{1+m^{2}} & \frac{m^{2}-1}{1+m^{2}}\end{array}\right)$, where $m=\tan \theta$

Show that the matrix $\left(\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)$ [representing a reflection in the line $y=\tan \theta \cdot x]$ can be written as $\left(\begin{array}{cc}\frac{1-m^{2}}{1+m^{2}} & \frac{2 m}{1+m^{2}} \\ \frac{2 m}{1+m^{2}} & \frac{m^{2}-1}{1+m^{2}}\end{array}\right)$, where $m=\tan \theta$

Solution

$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2 m}{1-m^{2}}$
The right-angled triangle with opposite and adjacent sides of $2 m \& 1-m^{2}$ has a hypotenuse of $\sqrt{4 m^{2}+\left(1-2 m^{2}+m^{4}\right)}$ $=\sqrt{\left(1+m^{2}\right)^{2}}=1+m^{2}$, so that $\sin 2 \theta=\frac{2 m}{1+m^{2}} \& \cos 2 \theta=\frac{1-m^{2}}{1+m^{2}}$, as required.

