Matrices - Q43: Invariant Points \& Lines [Problem/H]
(7/6/21)

Prove that invariant points of a 2D transformation always lie on a line passing through the Origin.

Prove that invariant points of a 2D transformation always lie on a line passing through the Origin.

Solution

Suppose that $y=p x+q$ is a line of invariant points for the transformation $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$.
Then $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{p x+q}=\binom{x}{p x+q}$
$\Rightarrow a x+c p x+c q=x$
and $b x+d p x+d q=p x+q$
As these equations are to hold for any x, we can equate coefficients of x and the constant terms to give:
$a+c p=1$
$c q=0(2)$
$b+d p=p$
$d q=q$ (4)
Suppose that $q \neq 0$
Then (2) \& (4) $\Rightarrow c=0 \& d=1$
and (1) \& (3) $\Rightarrow a=1 \& b=0$
ie $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is the identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, in which case all points are invariant.

Thus, apart from this trivial case, $q=0$ and so a line of invariant points takes the form $y=p x$, and therefore passes through the Origin.

