Matrices - Q42: Invariant Points \& Lines [Practice/E]
(7/6/21)

Find the equations of the invariant lines of the transformation represented by the matrix $\left(\begin{array}{cc}4 & 3 \\ -3 & -2\end{array}\right)$

Find the equations of the invariant lines of the transformation represented by the matrix $\left(\begin{array}{cc}4 & 3 \\ -3 & -2\end{array}\right)$

Solution

[Note that the transformation is a shear, as the determinant is 1 , and the trace $(4+(-2))$ equals 2 . Note also that, in general, the eigenvectors of a matrix give the invariant lines that pass through the Origin. In the case of a shear, which has repeated eigenvalues of 1 (see "Matrices - Notes"), the single eigenvector is the line of invariant points, and the other invariant lines will be parallel to this.]

Suppose that $\left(\begin{array}{cc}4 & 3 \\ -3 & -2\end{array}\right)\binom{x}{m x+c}=\binom{x^{\prime}}{m x^{\prime}+c}$ for all x
Then $4 x+3(m x+c)=x^{\prime}$
and $-3 x-2(m x+c)=m x^{\prime}+c$
$\Rightarrow-3 x-2 m x-2 c=m(4 x+3 m x+3 c)+c$
$\Rightarrow x\left(-3-2 m-4 m-3 m^{2}\right)-2 c-3 m c-c=0$
$\Rightarrow x\left(3 m^{2}+6 m+3\right)+3 c+3 m c=0$
$\Rightarrow x\left(m^{2}+2 m+1\right)+c(1+m)=0$
Equating coeffs of powers of x,
$m^{2}+2 m+1=0 \Rightarrow(m+1)^{2}=0 \Rightarrow m=-1$
and either $c=0$ or $m=-1$
Thus $m=-1$ and c can take any value, so that the invariant lines are $y=-x+c$

