Matrices - Q4: Eigenvectors [Practice/M](2/6/21)

Find $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)^{3}$, using eigenvectors.

Find $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)^{3}$, using eigenvectors.

Solution

To find the eigenvalues of $M=\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)$:
[We want a non-zero solution of $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}$;
ie of $(M-\lambda I)\binom{x}{y}=0$; for there to be more than one solution (ie a non-zero solution, as well as the zero solution), $|M-\lambda I|=0$; ie $\left|\begin{array}{cc}2-\lambda & 1 \\ 2 & 3-\lambda\end{array}\right|=0$]
The characteristic equation is $\left|\begin{array}{cc}2-\lambda & 1 \\ 2 & 3-\lambda\end{array}\right|=0$,
so that $(2-\lambda)(3-\lambda)-2=0$ and $\lambda^{2}-5 \lambda+4=0$
$\Rightarrow(\lambda-1)(\lambda-4)=0$
Thus the eigenvalues are $\lambda=1$ and 4
The eigenvectors satisfy $\left(\begin{array}{cc}2-\lambda & 1 \\ 2 & 3-\lambda\end{array}\right)\binom{x}{y}=\binom{0}{0}$
For $\lambda=1: \quad x+y=0 ; 2 x+2 y=0$
[as a check, these equations should be equivalent, and so producing more than one solution]

Thus an eigenvector for $\lambda=1$ is $\binom{1}{-1}$.
For $\lambda=4:-2 x+y=0 ; 2 x-y=0$
Thus an eigenvector for $\lambda=4$ is $\binom{1}{2}$.
[Note: any multiples of these eigenvectors are also solutions, and so there is an infinite number of solutions]

Let $S=\left(\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right)$ and $D=\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$
Then $M S=S D$
[considering the columns of S separately, and noting that $\left(\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right)\binom{0}{1}=\binom{1}{2}$, and so $\left(\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right)\binom{0}{4}=4\binom{1}{2}$; thus
$\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)\binom{1}{2}=4\binom{1}{2}$, and similarly for the 1 st column]
and hence $M=S D S^{-1}$
so that $M^{3}=\left(S D S^{-1}\right)\left(S D S^{-1}\right)\left(S D S^{-1}\right)=S D^{3} S^{-1}$
$=\frac{1}{3}\left(\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 64\end{array}\right)\left(\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right)$
$=\frac{1}{3}\left(\begin{array}{cc}1 & 64 \\ -1 & 128\end{array}\right)\left(\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right)$
$=\frac{1}{3}\left(\begin{array}{cc}66 & 63 \\ 126 & 129\end{array}\right)=\left(\begin{array}{ll}22 & 21 \\ 42 & 43\end{array}\right)$
[we would obviously expect to have only integers in the answer, being a power of M]

Check: $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)^{3}=\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)=\left(\begin{array}{cc}6 & 5 \\ 10 & 11\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)=$ $\left(\begin{array}{ll}22 & 21 \\ 42 & 43\end{array}\right)$

