Matrices - Q40: Transformations [Problem/M] (4/6/21)
(i) Find the equation of the line that the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)$ maps all points to.
(ii) For the same transformation, find the equation of the line that maps to the point with an x-coordinate of w.
(iii) For the same transformation, for which point(s) will the x-coordinate remain unchanged by the transformation?
(i) Find the equation of the line that the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)$ maps all points to.
(ii) For the same transformation, find the equation of the line that maps to the point with an x-coordinate of w.
(iii) For the same transformation, for which point(s) will the x-coordinate remain unchanged by the transformation?

Solution

(i) $\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)\binom{p}{q}=\binom{u}{v}$
$\Rightarrow p+2 q=u$ and $3 p+6 q=v$
so that $v=3 u$; equation of line is $y=3 x$
(ii) $\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)\binom{p}{q}=\binom{w}{3 w} \Rightarrow p+2 q=w$
$\Rightarrow q=\frac{1}{2}(w-p)$
ie equation is $y=\frac{w}{2}-\frac{x}{2}$
(iii) $\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)\binom{p}{q}=\binom{p}{3 p} \Rightarrow p+2 q=p$ (so that $\left.q=0\right)$,
(and $3 p+6 q=3 p$)
Thus all points on the x-axis map to points with the same x-coordinate.

