Matrices - Q38: Simultaneous Eq'ns [Problem/M]
(4/6/21)

Consider the planes with the following equations:

$$
\begin{array}{r}
a x-y+z=1 \\
2 y-z=b \\
4 x+3 y-2 z=2
\end{array}
$$

(i) Find conditions on a and b for:
(a) the 3 planes to meet at a single point
(b) the 3 planes to meet in a line
(c) no point of intersection of the 3 planes
(ii) Show that in case (c) the line of intersection of the 1st two planes is parallel to the 3rd plane.

Consider the planes with the following equations:

$$
\begin{array}{r}
a x-y+z=1 \\
2 y-z=b \\
4 x+3 y-2 z=2
\end{array}
$$

(i) Find conditions on a and b for:
(a) the 3 planes to meet at a single point
(b) the 3 planes to meet in a line
(c) no point of intersection of the 3 planes
(ii) Show that in case (c) the line of intersection of the 1st two planes is parallel to the 3rd plane.

Solution

(a) $\Delta=\left|\begin{array}{ccc}a & -1 & 1 \\ 0 & 2 & -1 \\ 4 & 3 & -2\end{array}\right|=($ expanding by the 1 st column $)$
$a(-1)+4(-1)$
The 3 planes will meet at a single point when $\Delta \neq 0$; ie when $a \neq-4$
(b) The 3 planes will meet in a line (as a sheaf of planes) when $\Delta=0$ (ie $a=-4$) and the equations are consistent.

Method 1

$$
\begin{gather*}
-4 x-y+z=1 \tag{1}\\
2 y-z=b \tag{2}\\
4 x+3 y-2 z=2 \tag{3}\\
(1)+(3) \text { gives } 2 y-z=3
\end{gather*}
$$

This is consistent with (2) when $b=3$

Method 2

Replacing eg the 3rd column of the determinant with $\left(\begin{array}{l}1 \\ b \\ 2\end{array}\right)$, the equations will be consistent when $\left|\begin{array}{ccc}-4 & -1 & 1 \\ 0 & 2 & b \\ 4 & 3 & 2\end{array}\right|=0$
(this is a result connected with Cramer's method for solving simultaneous equations)
Expanding about the 2nd row,
$\left|\begin{array}{ccc}-4 & -1 & 1 \\ 0 & 2 & b \\ 4 & 3 & 2\end{array}\right|=0 \Rightarrow 2(-12)-b(-8)=0 \Rightarrow b=3$

Method 3

We can attempt to find a common line:
Let $(\mathrm{eg}) x=\lambda$, so that

$$
\begin{align*}
& -y+z=1+4 \lambda \tag{1}\\
& 2 y-z=b \tag{2}\\
& 3 y-2 z=2-4 \lambda \tag{3}
\end{align*}
$$

Then (1) $+(2)$ gives $y=1+b+4 \lambda$
and $(2)+2(1)$ gives $z=b+2+8 \lambda$
Substituting into (3): $3(1+b+4 \lambda)-2(b+2+8 \lambda)=2-4 \lambda$
$\Rightarrow-3+b=0 \Rightarrow b=3$
(c) There will be no point of intersection of the 3 planes (which will then form a triangular prism) when $a=-4$ and $b \neq 3$
(ii) To find the intersection of the first two planes:
$-4 x-y+z=1$

$$
2 y-z=b
$$

Let eg $x=\lambda$, so that:
$-y+z=1+4 \lambda$
$2 y-z=b$
$(1)+(2)$ gives $y=1+4 \lambda+b$
And 2(1) $+(2)$ gives $z=2+8 \lambda+b$
Hence the line of intersection of the first two planes is:
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ 1+b \\ 2+b\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 4 \\ 8\end{array}\right)$

Then $\left(\begin{array}{l}1 \\ 4 \\ 8\end{array}\right) \cdot\left(\begin{array}{c}4 \\ 3 \\ -2\end{array}\right)=4+12-16=0$,
so that this line is perpendicular to the normal vector to the 3rd plane, and hence parallel to the plane.

