Matrices – Q36: Simultaneous Eq'ns [Practice/E] (3/6/21)

Find the value of k for which the following equations are consistent.

$$3x - 3y - z = k$$

$$2x - y - z = 5$$

$$x + 4y - 2z = 7$$

Find the value of k for which the following equations are consistent.

$$3x - 3y - z = k$$

$$2x - y - z = 5$$

$$x + 4y - 2z = 7$$

Solution

$$3x - 3y - z = k(1)$$

$$2x - y - z = 5$$
 (2)

$$x + 4y - 2z = 7(3)$$

Method 1

Using (2) to eliminate z in (1) & (3):

$$3x - 3y - (2x - y - 5) = k$$
; ie $x - 2y = k - 5$ (1')

$$x + 4y - 2(2x - y - 5) = 7$$
; ie $-3x + 6y = -3$

and
$$x - 2y = 1$$
 (3')

Hence, k - 5 = 1 for consistency, so that k = 6

Method 2

$$\begin{vmatrix} 3 & -3 & -1 \\ 2 & -1 & -1 \\ 1 & 4 & -2 \end{vmatrix} = 3(6) - 2(10) + 1(2) = 0$$

By Cramer's rule, $x = \begin{vmatrix} k & -3 & -1 \\ 5 & -1 & -1 \\ 7 & 4 & -2 \end{vmatrix}$, and this will only have a value if $\begin{vmatrix} 1 & 3 & -3 & -1 \\ 2 & -1 & -1 \\ 1 & 4 & -2 \end{vmatrix}$

$$\begin{vmatrix} k & -3 & -1 \\ 5 & -1 & -1 \\ 7 & 4 & -2 \end{vmatrix} = 0$$

ie when k(6) - 5(10) + 7(2) = 0,

so that 6k = 36; k = 6