Matrices - Q34: Shears [Practice/M] (3/6/21)

Find the invariant lines of the shear represented by the matrix $\left(\begin{array}{ll}7 & -4 \\ 9 & -5\end{array}\right)$

Find the invariant lines of the shear represented by the matrix $\left(\begin{array}{ll}7 & -4 \\ 9 & -5\end{array}\right)$

## Solution

Line of invariant points:
$\left(\begin{array}{ll}7 & -4 \\ 9 & -5\end{array}\right)\binom{x}{y}=\binom{x}{y} \Rightarrow 7 x-4 y=x \Rightarrow y=\frac{3 x}{2}$
[this is the 'line of shear']
Invariant lines:
$\left(\begin{array}{ll}7 & -4 \\ 9 & -5\end{array}\right)\binom{x}{m x+c}=\binom{7 x-4 m x-4 c}{9 x-5 m x-5 c}$
We require $9 x-5 m x-5 c=m(7 x-4 m x-4 c)+c($ for all $x)$
Equating coefficients of $x, 9-5 m=7 m-4 m^{2}$,
so that $4 m^{2}-12 m+9=0$
$\Rightarrow(2 m-3)^{2}=0 \Rightarrow m=\frac{3}{2}$
Equating constant terms: $-5 c=-4 m c+c$
$\Rightarrow 0=c(6-4 m) \Rightarrow c=0$ or $m=\frac{3}{2}(2)$
In order for both (1) \& (2) to hold, $m=\frac{3}{2}$
ie the invariant lines are $y=\frac{3 x}{2}+c$
(parallel to the line of shear)

